Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Network meta-analysis of individual and aggregate data in Stan

NotificationsYou must be signed in to change notification settings

dmphillippo/multinma

Repository files navigation

CRAN statusR-universeR-CMD-checkDOI

Themultinma package implements network meta-analysis, networkmeta-regression, and multilevel network meta-regression models whichcombine evidence from a network of studies and treatments using eitheraggregate data or individual patient data from each study (Phillippo etal. 2020; Phillippo 2019). Models are estimated in a Bayesian frameworkusing Stan (Carpenter et al. 2017).

Installation

You can install the released version ofmultinma fromCRAN with:

install.packages("multinma")

The development version can be installed fromR-universe with:

install.packages("multinma",repos= c("https://dmphillippo.r-universe.dev", getOption("repos")))

or from source onGitHubwith:

# install.packages("devtools")devtools::install_github("dmphillippo/multinma")

Installing from source requires that therstan package is installedand configured. See the installation guidehere.

Getting started

A good place to start is with the package vignettes which walk throughexample analyses, seevignette("vignette_overview") for an overview.The series of NICE Technical Support Documents on evidence synthesisgives a detailed introduction to network meta-analysis:

Dias, S. et al. (2011). “NICE DSU Technical Support Documents 1-7:Evidence Synthesis for Decision Making.”National Institute forHealth and Care Excellence. Available fromhttps://www.sheffield.ac.uk/nice-dsu/tsds.

Multilevel network meta-regression is set out in the following methodspapers:

Phillippo, D. M. et al. (2020). “Multilevel Network Meta-Regressionfor population-adjusted treatment comparisons.”Journal of the RoyalStatistical Society: Series A (Statistics in Society),183(3):1189-1210. doi:10.1111/rssa.12579.

Phillippo, D. M. et al. (2024). “Multilevel network meta-regressionfor general likelihoods: synthesis of individual and aggregate datawith applications to survival analysis”.arXiv:2401.12640.

Citing multinma

Themultinma package can be cited as follows:

Phillippo, D. M. (2025).multinma: Bayesian Network Meta-Analysis ofIndividual and Aggregate Data. R package version 0.8.1.9000, doi:10.5281/zenodo.3904454.

When fitting ML-NMR models, please cite the methods paper:

Phillippo, D. M. et al. (2020). “Multilevel Network Meta-Regressionfor population-adjusted treatment comparisons.”Journal of the RoyalStatistical Society: Series A (Statistics in Society),183(3):1189-1210. doi:10.1111/rssa.12579.

For ML-NMR models with time-to-event outcomes, please cite:

Phillippo, D. M. et al. (2024). “Multilevel network meta-regressionfor general likelihoods: synthesis of individual and aggregate datawith applications to survival analysis”.arXiv:2401.12640.

References

Carpenter, B., A. Gelman, M. D. Hoffman, D. Lee, B. Goodrich, M.Betancourt, M. Brubaker, J. Guo, P. Li, and A. Riddell. 2017. “Stan: AProbabilistic Programming Language.”Journal of Statistical Software76 (1).https://doi.org/10.18637/jss.v076.i01.

Phillippo, D. M. 2019. “Calibration of Treatment Effects in NetworkMeta-Analysis Using Individual Patient Data.” PhD thesis, University ofBristol.

Phillippo, D. M., S. Dias, A. E. Ades, M. Belger, A. Brnabic, A.Schacht, D. Saure, Z. Kadziola, and N. J. Welton. 2020. “MultilevelNetwork Meta-Regression for Population-Adjusted Treatment Comparisons.”Journal of the Royal Statistical Society: Series A (Statistics inSociety) 183 (3): 1189–1210.https://doi.org/10.1111/rssa.12579.

About

Network meta-analysis of individual and aggregate data in Stan

Topics

Resources

Stars

Watchers

Forks

Contributors6

Languages


[8]ページ先頭

©2009-2025 Movatter.jp