- Notifications
You must be signed in to change notification settings - Fork4
cscss/DBVSR
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
This repository is an official PyTorch implementation of the paper "Deep Blind Video Super-resolution".
The code is built on Ubuntu 16.04 environment (Python3.6, PyTorch_0.4.1, CUDA8.0, cuDNN5.1) with Tesla V100/1080Ti GPUs.
- ubuntu16.04
- python 3.6(Recommend to use Anaconda)
- pyTorch0.4.1
- numpy
- skimage
- imageio
- matplotlib
- tqdm
- cv2
We use the REDS dataset to train our models. You can download it fromofficial website
We regroup the REDS training and validation sets same asEDVR do:
trainset: the original training (except 4 clips) and validation sets, total 266 clips
validationset: 000, 011, 015 and 020 clips from the original training set, total 4 clips
All the models(X4) can be downloaded fromGoogleDrive.
After download our models in paper, place the foldermodels_in_paper
to the path./DBVSR
You can test our super-resolution algorithm with REDS4 dataset. Please organize the testset intestset
folder like this:
|--REDS |--test |--HR |--000 |--00000000.png : : |--00000099.png |--011 |--015 |--020 |--LR |--000 |--00000000.png : : |--00000099.png |--011 |--015 |--020
please check the data root of test sets in code./code/option/template.py
, line 9(args.dir_data_test).(for dbvsr)
please check the data root of test sets in code./code/option/template.py
, line 26(args.dir_data_test).(for baseline_lr)
please check the data root of test sets in code./code/option/template.py
, line 43(args.dir_data_test).(for baseline_hr)
Then, run the following commands:
cd codepython main.py --test_only
And generated results can be found in./experiment/dbvsr_test/results/
for dbvsr results
And generated results can be found in./experiment/baseline_lr_test/results/
for baseline_lr results
And generated results can be found in./experiment/baeline_hr_test/results/
for baseline_hr results
- To test other benchmarks, you can modify the option(dir_data_test) of the command above.
- To change the save root, you can modify the option(save) of the command above.
If you have downloaded the trainset, please make sure that the trainset has been organized as follows:
|--REDS |--train |--HR |--001 |--00000000.png |--00000001.png : : |--00000099.png |--002 : : |--239 |--LR |--001 |--00000000.png |--00000001.png : : |--00000099.png |--002 : : |--239
Then,please check the data root of train sets in code./code/option/template.py
, line 6(args.dir_data).(for dbvsr)
please check the data root of train sets in code./code/option/template.py
, line 23(args.dir_data).(for baseline_lr)
please check the data root of train sets in code./code/option/template.py
, line 40(args.dir_data).(for baseline_hr)
The command for training is as follow:
cd codepython main.py
The pretrain_model of pwc-net and fcnet can be found in./pretrain
.