- Notifications
You must be signed in to change notification settings - Fork47
A library to parse gdb mi output and interact with gdb subprocesses
License
cs01/pygdbmi
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
Documentationhttps://cs01.github.io/pygdbmi
Source Codehttps://github.com/cs01/pygdbmi
Python (py)gdb machine interface(mi)
GDB/MI is a line based machine oriented text interface to GDB and is activated by specifying using the --interpreter command line option (see Mode Options). It is specifically intended to support the development of systems which use the debugger as just one small component of a larger system.
- A function to parse gdb machine interface string output and return structured data types (Python dicts) that are JSON serializable. Useful for writing the backend to a gdb frontend. For example,gdbgui uses pygdbmi on the backend.
- A Python class to control and interact with gdb as a subprocess
To getmachine interface output from gdb, run gdb with the--interpreter=mi2
flag like so:
gdb --interpreter=mi2
pip install pygdbmi
Cross platform support for Linux, macOS and Windows
Linux/Unix
Ubuntu 14.04 and 16.04 have been tested to work. Other versions likely work as well.
macOS
Note: the error
please check gdb is codesigned - see taskgated(8)
can be fixed by codesigning gdb withthese instructions. If the error is not fixed, pleasecreate an issue in github.Windows
Windows 10 has been tested to work with MinGW and cygwin.
- gdb 7.6+ has been tested. Older versions may work as well.
gdb mi defines a syntax for its output that is suitable for machine readability and scripting:example output:
-> -break-insert main<- ^done,bkpt={number="1",type="breakpoint",disp="keep",enabled="y",addr="0x08048564",func="main",file="myprog.c",fullname="/home/myprog.c",line="68",thread-groups=["i1"],times="0"}<- (gdb)
Usepygdbmi.gdbmiparser.parse_response
to turn that string output into a JSON serializable dictionary
frompygdbmiimportgdbmiparserfrompprintimportpprintresponse=gdbmiparser.parse_response('^done,bkpt={number="1",type="breakpoint",disp="keep", enabled="y",addr="0x08048564",func="main",file="myprog.c",fullname="/home/myprog.c",line="68",thread-groups=["i1"],times="0"')pprint(response)pprint(response)# Prints:# {'message': 'done',# 'payload': {'bkpt': {'addr': '0x08048564',# 'disp': 'keep',# 'enabled': 'y',# 'file': 'myprog.c',# 'fullname': '/home/myprog.c',# 'func': 'main',# 'line': '68',# 'number': '1',# 'thread-groups': ['i1'],# 'times': '0',# 'type': 'breakpoint'}},# 'token': None,# 'type': 'result'}
But how do you get the gdb output into Python in the first place? If you want,pygdbmi
also has a class to control gdb as subprocess. You can write commands, and get structured output back:
frompygdbmi.gdbcontrollerimportGdbControllerfrompprintimportpprint# Start gdb processgdbmi=GdbController()print(gdbmi.command)# print actual command run as subprocess# Load binary a.out and get structured responseresponse=gdbmi.write('-file-exec-file a.out')pprint(response)# Prints:# [{'message': 'thread-group-added',# 'payload': {'id': 'i1'},# 'stream': 'stdout',# 'token': None,# 'type': 'notify'},# {'message': 'done',# 'payload': None,# 'stream': 'stdout',# 'token': None,# 'type': 'result'}]
Now do whatever you want with gdb. All gdb commands, as well as gdb machine interface commands are acceptable. gdb mi commands give better structured output that is machine readable, rather than gdb console output. mi commands begin with a-
.
response=gdbmi.write('-break-insert main')# machine interface (MI) commands start with a '-'response=gdbmi.write('break main')# normal gdb commands work too, but the return value is slightly differentresponse=gdbmi.write('-exec-run')response=gdbmi.write('run')response=gdbmi.write('-exec-next',timeout_sec=0.1)# the wait time can be modified from the default of 1 secondresponse=gdbmi.write('next')response=gdbmi.write('next',raise_error_on_timeout=False)response=gdbmi.write('next',raise_error_on_timeout=True,timeout_sec=0.01)response=gdbmi.write('-exec-continue')response=gdbmi.send_signal_to_gdb('SIGKILL')# name of signal is okayresponse=gdbmi.send_signal_to_gdb(2)# value of signal is okay tooresponse=gdbmi.interrupt_gdb()# sends SIGINT to gdbresponse=gdbmi.write('continue')response=gdbmi.exit()
Each parsed gdb response consists of a list of dictionaries. Each dictionary has keysmessage
,payload
,token
, andtype
.
message
contains a textual message from gdb, which is not always present. When missing, this isNone
.payload
contains the content of gdb's output, which can contain any of the following:dictionary
,list
,string
. This too is not always present, and can beNone
depending on the response.token
If an input command was prefixed with a (optional) token then the corresponding output for that command will also be prefixed by that same token. This field is only present for pygdbmi output typesnofity
andresult
. When missing, this isNone
.
Thetype
is defined based on gdb's various mi output record types, and can be
result
- the result of a gdb command, such asdone
,running
,error
, etc.notify
- additional async changes that have occurred, such as breakpoint modifiedconsole
- textual responses to cli commandslog
- debugging messages from gdb's internalsoutput
- output from targettarget
- output from remote targetdone
- when gdb has finished its output
Documentation fixes, bug fixes, performance improvements, and functional improvements are welcome. You may want to create an issue before beginning work to make sure I am interested in merging it to the master branch.
pygdbmi usesnox for automation.
See available tasks with
nox -l
Run tests and lint with
nox -s testsnox -s lint
Positional arguments passed tonox -s tests
are passed directly topytest
. For instance, to run only the parse tests use
nox -s tests -- tests/test_gdbmiparser.py
Seepytest
's documentation for more details on how to run tests.
To format code using the correct settings use
nox -s format
Or, to format only specified files, use
nox -s format -- example.py pygdbmi/IoManager.py
Only maintainers of thepygdbmi package on PyPi can make a release.
In the following steps, replace these strings with the correct values:
<REMOTE>
is the name of the remote for the main pygdbmi repository (for instance,origin
)<VERSION>
is the version number chosen in step 2.
To make a release:
Checkout the
master
branch and pull from the main repository withgit pull <REMOTE> master
Decide the version number for the new release; we followSemantic Versioning but prefixing the version with
0.
: given a versionnumber0.SECOND.THIRD.FOURTH, increment the:- SECOND component when you make incompatible API changes
- THIRD component when you add functionality in a backwards compatible manner
- FOURTH component when you make backwards compatible bug fixes
Update
CHANGELOG.md
to list the chosen version number instead of## dev
Update
__version__
inpygdbmi/__init__.py
to the chosen version numberCreate a branch, for instance using
git checkout -b before-release-<VERSION>
Commit your changes, for instance using
git commit -a -m 'Bump version to <VERSION> for release'
Check that the docs look fine by serving them locally with
nox -s serve_docs
Push the branch, for instance with
git push --set-upstream <REMOTE> before-release-<VERSION>
If tests pass on the PR you created, you can merge into
master
Go to thenew release page and prepare therelease:
- Add a tag in the form
v<VERSION>
(for examplev0.1.2.3
) - Set the title to
pygdbmi v<VERSION>
(for examplepygdbmi v0.1.2.3
) - Copy and paste the section for the new release only from
CHANGELOG.md
excluding the linewith the version number - Press “Publish release”
- Add a tag in the form
Publish the release to PyPI with
nox -s publish
Publish the docs with
nox -s publish_docs
Verify that thePyPi page for pygdbmi looks correct
Verify that thepublished docs look correct
Prepare for changes for the next release by adding something like this above the previousentries in
CHANGELOG.md
(where<VERSION+1>
is<VERSION>
with the last digit increadedby 1):## <VERSION+1>.dev0- *Replace this line with new entries*
Create a branch for the changes with
git checkout -b after-release-<VERSION>
Commit the change with
git commit -m 'Prepare for work on the next release' CHANGELOG.md
Push the branch with
git push --set-upstream <REMOTE> after-release-<VERSION>
If tests pass, merge into
master
- tsgdbmi A port of pygdbmi to TypeScript
- danielzfranklin/gdbmi A port of pygdbmi to Rust
- gdbgui implements a browser-based frontend to gdb, using pygdbmi on the backend
- PINCE is a gdb frontend that aims to provide a reverse engineering tool and a reusable library focused on games. It uses pygdbmi to parse gdb/mi based output for some functions
- avatar² is an orchestration framework for reversing and analysing firmware of embedded devices. It utilizes pygdbmi for internal communication to different analysis targets.
- UDB is a proprietary time-travel debugger for C and C++ based on GDB. It uses pygdbmi in its extensive test suite to parse the debugger's output.
- pwndbg-gui is a user-friendly graphical interface forpwndbg, a tool that simplifies exploit development and reverse engineering with GDB. It uses pygdbmi to interact with GDB and get structured responses.
- Know of another project? Create a PR and add it here.
- Chad Smith (main author and creator).
- Marco Barisione (co-maintainer).
- The community. Thanks especially to @mariusmue, @bobthekingofegypt, @mouuff, and @felipesere.
About
A library to parse gdb mi output and interact with gdb subprocesses