Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commitcf5d723

Browse files
Update src/geometry/nearest_points.md
Better formattingCo-authored-by: Oleksandr Kulkov <adamant.pwn@gmail.com>
1 parent773b4bc commitcf5d723

File tree

1 file changed

+1
-1
lines changed

1 file changed

+1
-1
lines changed

‎src/geometry/nearest_points.md‎

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -178,7 +178,7 @@ We will consider only the squares containing at least one point. Denote by $n_1,
178178
??? info "Proof"
179179
For the $i$-th square containing $n_i$ points, the number of pairs inside is $\Theta(n_i^2)$. If the $i$-th square is adjacent to the $j$-th square, then we also perform $n_i n_j \le \max(n_i, n_j)^2 \le n_i^2 + n_j^2$ distance comparisons. Notice that each square has at most $8$ adjacent squares, so we can bound the sum of all comparisons by $\Theta(\sum_{i=1}^{k} n_i^2)$. $\quad \blacksquare$
180180

181-
Now we need to decide on how to set $d$ so that it minimizes $\Theta(\sum_{i=1}^{k} n_i^2)$.
181+
Now we need to decide on how to set $d$ so that it minimizes $\Theta\left(\sum\limits_{i=1}^k n_i^2\right)$.
182182

183183
####Choosing d
184184

0 commit comments

Comments
 (0)

[8]ページ先頭

©2009-2025 Movatter.jp