You signed in with another tab or window.Reload to refresh your session.You signed out in another tab or window.Reload to refresh your session.You switched accounts on another tab or window.Reload to refresh your session.Dismiss alert
we get the continued fraction of $\sf$ as $[2; 1, 1, 4, 1, 1, 4, \ldots]$.
77
77
78
78
###Finding the solution using Chakravala method
79
+
The Chakravala method is an ancient Indian algorithm to solve Pell's equation. It is based on the Brahmagupta's identity of quadratic decomposition.
80
+
$(x_{1}^{2} - n \cdot y_{1}^{2}) \cdot (x_{2}^{2} - n \cdot y_{2}^{2}) = (x_{1} \cdot x_{2} + n \cdot y_{1} \cdot y_{2})^{2} - n \cdot (x_{1} \cdot y_{2} + x_{2} \cdot y_{1})^{2}$
81
+
$(x_{1}^{2} - n \cdot y_{1}^{2}) \cdot (x_{2}^{2} - n \cdot y_{2}^{2}) = (x_{1} \cdot x_{2} - n \cdot y_{1} \cdot y_{2})^{2} - n \cdot (x_{1} \cdot y_{2} - x_{2} \cdot y_{1})^{2}$
79
82
83
+
Using above Brahmagupta's identity, If $(x_{1}, y_{1}, k_{1})$ and $(x_{2}, y_{2}, k_{2})$ satisfy $(x_{1}^{2} - y_1^{2}) \cdot (x_{2}^{2} - y_2^{2}) = k_{1} \cdot k_{2} $, then $(x_{1} \cdot x_{2} + n \cdot y_{1} \cdot y_{2}, x_{1} \cdot y_{2} + y_{1} \cdot x_{2}, k_{1} \cdot k_{2})$ is also a solution of $(x_{1} \cdot x_{2} + n \cdot y_{1} \cdot y_{2})^{2} - n \cdot (x_{1} \cdot y_{2} + x_{2} \cdot y_{1})^{2} = k_{1} \cdot k_{2}$
84
+
85
+
[//]:#(First, we choose $y_{1} = 1$ and choose $x_{1} = \lfloor \sqrt n \rfloor$ such that $k_{1}$ is a small integer.)
86
+
87
+
[//]:#()
88
+
[//]:#(Then, Iteratively we adjust $x_{1}$ and $y_{1}$ so that $k_{1} = 1$. The solution is given by $(x_{1}, y_{1})$ to original Pell's equation.)