Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commitb5517a0

Browse files
committed
references and problem from project euler
1 parenta4c3729 commitb5517a0

File tree

1 file changed

+23
-1
lines changed

1 file changed

+23
-1
lines changed

‎src/others/pells_equation.md

Lines changed: 23 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -76,9 +76,31 @@ $$\sf=2+\cfrac{1}{1+\cfrac1{1+\cfrac1{1+\cfrac4{\vdots}}}}$$
7676
we get the continued fraction of $\sf$ as $[2; 1, 1, 4, 1, 1, 4, \ldots]$.
7777

7878
###Finding the solution using Chakravala method
79+
The Chakravala method is an ancient Indian algorithm to solve Pell's equation. It is based on the Brahmagupta's identity of quadratic decomposition.
80+
$(x_{1}^{2} - n \cdot y_{1}^{2}) \cdot (x_{2}^{2} - n \cdot y_{2}^{2}) = (x_{1} \cdot x_{2} + n \cdot y_{1} \cdot y_{2})^{2} - n \cdot (x_{1} \cdot y_{2} + x_{2} \cdot y_{1})^{2}$
81+
$(x_{1}^{2} - n \cdot y_{1}^{2}) \cdot (x_{2}^{2} - n \cdot y_{2}^{2}) = (x_{1} \cdot x_{2} - n \cdot y_{1} \cdot y_{2})^{2} - n \cdot (x_{1} \cdot y_{2} - x_{2} \cdot y_{1})^{2}$
7982

83+
Using above Brahmagupta's identity, If $(x_{1}, y_{1}, k_{1})$ and $(x_{2}, y_{2}, k_{2})$ satisfy $(x_{1}^{2} - y_1^{2}) \cdot (x_{2}^{2} - y_2^{2}) = k_{1} \cdot k_{2} $, then $(x_{1} \cdot x_{2} + n \cdot y_{1} \cdot y_{2}, x_{1} \cdot y_{2} + y_{1} \cdot x_{2}, k_{1} \cdot k_{2})$ is also a solution of $(x_{1} \cdot x_{2} + n \cdot y_{1} \cdot y_{2})^{2} - n \cdot (x_{1} \cdot y_{2} + x_{2} \cdot y_{1})^{2} = k_{1} \cdot k_{2}$
84+
85+
[//]:#(First, we choose $y_{1} = 1$ and choose $x_{1} = \lfloor \sqrt n \rfloor$ such that $k_{1}$ is a small integer.)
86+
87+
[//]:#()
88+
[//]:#(Then, Iteratively we adjust $x_{1}$ and $y_{1}$ so that $k_{1} = 1$. The solution is given by $(x_{1}, y_{1})$ to original Pell's equation.)
89+
[//]:#()
90+
[//]:#( Choosing m. At e)
8091

8192
##Implementation
8293
```cpp
8394

84-
```
95+
```
96+
97+
##References
98+
-[Pell's equation - Wikipedia](https://en.wikipedia.org/wiki/Pell%27s_equation)
99+
-[Periodic Continued Fractions](https://en.wikipedia.org/wiki/Periodic_continued_fraction)
100+
-[Chakralava Method - Wikipedia](https://en.wikipedia.org/wiki/Chakravala_method)
101+
-[Chakralava Method](https://www.isibang.ac.in/~sury/chakravala.pdf)
102+
-[Codeforces Pell's Equation](https://codeforces.com/topic/116937/en20)
103+
104+
##Problems
105+
-[Project Euler 66](https://projecteuler.net/problem=66)
106+
-[Hackerrank ProjectEuler-066](https://www.hackerrank.com/contests/projecteuler/challenges/euler066/problem)

0 commit comments

Comments
 (0)

[8]ページ先頭

©2009-2025 Movatter.jp