Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

🐸💬 - a deep learning toolkit for Text-to-Speech, battle-tested in research and production

License

NotificationsYou must be signed in to change notification settings

coqui-ai/TTS

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4,668 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  • 📣 ⓍTTSv2 is here with 16 languages and better performance across the board.
  • 📣 ⓍTTS fine-tuning code is out. Check theexample recipes.
  • 📣 ⓍTTS can now stream with <200ms latency.
  • 📣 ⓍTTS, our production TTS model that can speak 13 languages, is releasedBlog Post,Demo,Docs
  • 📣🐶Bark is now available for inference with unconstrained voice cloning.Docs
  • 📣 You can use~1100 Fairseq models with 🐸TTS.
  • 📣 🐸TTS now supports 🐢Tortoise with faster inference.Docs

🐸TTS is a library for advanced Text-to-Speech generation.

🚀 Pretrained models in +1100 languages.

🛠️ Tools for training new models and fine-tuning existing models in any language.

📚 Utilities for dataset analysis and curation.


DiscordLicensePyPI versionCovenantDownloadsDOI

GithubActionsGithubActionsGithubActionsGithubActionsGithubActionsGithubActionsGithubActionsGithubActionsGithubActionsGithubActionsGithubActionsDocs


💬 Where to ask questions

Please use our dedicated channels for questions and discussion. Help is much more valuable if it's shared publicly so that more people can benefit from it.

TypePlatforms
🚨Bug ReportsGitHub Issue Tracker
🎁Feature Requests & IdeasGitHub Issue Tracker
👩‍💻Usage QuestionsGitHub Discussions
🗯General DiscussionGitHub Discussions orDiscord

🔗 Links and Resources

TypeLinks
💼DocumentationReadTheDocs
💾InstallationTTS/README.md
👩‍💻ContributingCONTRIBUTING.md
📌Road MapMain Development Plans
🚀Released ModelsTTS Releases andExperimental Models
📰PapersTTS Papers

🥇 TTS Performance

Underlined "TTS*" and "Judy*" areinternal 🐸TTS models that are not released open-source. They are here to show the potential. Models prefixed with a dot (.Jofish .Abe and .Janice) are real human voices.

Features

  • High-performance Deep Learning models for Text2Speech tasks.
    • Text2Spec models (Tacotron, Tacotron2, Glow-TTS, SpeedySpeech).
    • Speaker Encoder to compute speaker embeddings efficiently.
    • Vocoder models (MelGAN, Multiband-MelGAN, GAN-TTS, ParallelWaveGAN, WaveGrad, WaveRNN)
  • Fast and efficient model training.
  • Detailed training logs on the terminal and Tensorboard.
  • Support for Multi-speaker TTS.
  • Efficient, flexible, lightweight but feature completeTrainer API.
  • Released and ready-to-use models.
  • Tools to curate Text2Speech datasets underdataset_analysis.
  • Utilities to use and test your models.
  • Modular (but not too much) code base enabling easy implementation of new ideas.

Model Implementations

Spectrogram models

End-to-End Models

Attention Methods

  • Guided Attention:paper
  • Forward Backward Decoding:paper
  • Graves Attention:paper
  • Double Decoder Consistency:blog
  • Dynamic Convolutional Attention:paper
  • Alignment Network:paper

Speaker Encoder

Vocoders

Voice Conversion

You can also help us implement more models.

Installation

🐸TTS is tested on Ubuntu 18.04 withpython >= 3.9, < 3.12..

If you are only interested insynthesizing speech with the released 🐸TTS models, installing from PyPI is the easiest option.

pip install TTS

If you plan to code or train models, clone 🐸TTS and install it locally.

git clone https://github.com/coqui-ai/TTSpip install -e .[all,dev,notebooks]# Select the relevant extras

If you are on Ubuntu (Debian), you can also run following commands for installation.

$ make system-deps# intended to be used on Ubuntu (Debian). Let us know if you have a different OS.$ make install

If you are on Windows, 👑@GuyPaddock wrote installation instructionshere.

Docker Image

You can also try TTS without install with the docker image.Simply run the following command and you will be able to run TTS without installing it.

docker run --rm -it -p 5002:5002 --entrypoint /bin/bash ghcr.io/coqui-ai/tts-cpupython3 TTS/server/server.py --list_models#To get the list of available modelspython3 TTS/server/server.py --model_name tts_models/en/vctk/vits# To start a server

You can then enjoy the TTS serverhereMore details about the docker images (like GPU support) can be foundhere

Synthesizing speech by 🐸TTS

🐍 Python API

Running a multi-speaker and multi-lingual model

importtorchfromTTS.apiimportTTS# Get devicedevice="cuda"iftorch.cuda.is_available()else"cpu"# List available 🐸TTS modelsprint(TTS().list_models())# Init TTStts=TTS("tts_models/multilingual/multi-dataset/xtts_v2").to(device)# Run TTS# ❗ Since this model is multi-lingual voice cloning model, we must set the target speaker_wav and language# Text to speech list of amplitude values as outputwav=tts.tts(text="Hello world!",speaker_wav="my/cloning/audio.wav",language="en")# Text to speech to a filetts.tts_to_file(text="Hello world!",speaker_wav="my/cloning/audio.wav",language="en",file_path="output.wav")

Running a single speaker model

# Init TTS with the target model nametts=TTS(model_name="tts_models/de/thorsten/tacotron2-DDC",progress_bar=False).to(device)# Run TTStts.tts_to_file(text="Ich bin eine Testnachricht.",file_path=OUTPUT_PATH)# Example voice cloning with YourTTS in English, French and Portuguesetts=TTS(model_name="tts_models/multilingual/multi-dataset/your_tts",progress_bar=False).to(device)tts.tts_to_file("This is voice cloning.",speaker_wav="my/cloning/audio.wav",language="en",file_path="output.wav")tts.tts_to_file("C'est le clonage de la voix.",speaker_wav="my/cloning/audio.wav",language="fr-fr",file_path="output.wav")tts.tts_to_file("Isso é clonagem de voz.",speaker_wav="my/cloning/audio.wav",language="pt-br",file_path="output.wav")

Example voice conversion

Converting the voice insource_wav to the voice oftarget_wav

tts=TTS(model_name="voice_conversion_models/multilingual/vctk/freevc24",progress_bar=False).to("cuda")tts.voice_conversion_to_file(source_wav="my/source.wav",target_wav="my/target.wav",file_path="output.wav")

Example voice cloning together with the voice conversion model.

This way, you can clone voices by using any model in 🐸TTS.

tts=TTS("tts_models/de/thorsten/tacotron2-DDC")tts.tts_with_vc_to_file("Wie sage ich auf Italienisch, dass ich dich liebe?",speaker_wav="target/speaker.wav",file_path="output.wav")

Example text to speech usingFairseq models in ~1100 languages 🤯.

For Fairseq models, use the following name format:tts_models/<lang-iso_code>/fairseq/vits.You can find the language ISO codeshereand learn about the Fairseq modelshere.

# TTS with on the fly voice conversionapi=TTS("tts_models/deu/fairseq/vits")api.tts_with_vc_to_file("Wie sage ich auf Italienisch, dass ich dich liebe?",speaker_wav="target/speaker.wav",file_path="output.wav")

Command-linetts

Synthesize speech on command line.

You can either use your trained model or choose a model from the provided list.

If you don't specify any models, then it uses LJSpeech based English model.

Single Speaker Models

  • List provided models:

    $ tts --list_models
  • Get model info (for both tts_models and vocoder_models):

    • Query by type/name:The model_info_by_name uses the name as it from the --list_models.

      $ tts --model_info_by_name "<model_type>/<language>/<dataset>/<model_name>"

      For example:

      $ tts --model_info_by_name tts_models/tr/common-voice/glow-tts$ tts --model_info_by_name vocoder_models/en/ljspeech/hifigan_v2
    • Query by type/idx:The model_query_idx uses the corresponding idx from --list_models.

      $ tts --model_info_by_idx "<model_type>/<model_query_idx>"

      For example:

      $ tts --model_info_by_idx tts_models/3
    • Query info for model info by full name:

      $ tts --model_info_by_name "<model_type>/<language>/<dataset>/<model_name>"
  • Run TTS with default models:

    $ tts --text "Text for TTS" --out_path output/path/speech.wav
  • Run TTS and pipe out the generated TTS wav file data:

    $ tts --text "Text for TTS" --pipe_out --out_path output/path/speech.wav | aplay
  • Run a TTS model with its default vocoder model:

    $ tts --text "Text for TTS" --model_name "<model_type>/<language>/<dataset>/<model_name>" --out_path output/path/speech.wav

    For example:

    $ tts --text "Text for TTS" --model_name "tts_models/en/ljspeech/glow-tts" --out_path output/path/speech.wav
  • Run with specific TTS and vocoder models from the list:

    $ tts --text "Text for TTS" --model_name "<model_type>/<language>/<dataset>/<model_name>" --vocoder_name "<model_type>/<language>/<dataset>/<model_name>" --out_path output/path/speech.wav

    For example:

    $ tts --text "Text for TTS" --model_name "tts_models/en/ljspeech/glow-tts" --vocoder_name "vocoder_models/en/ljspeech/univnet" --out_path output/path/speech.wav
  • Run your own TTS model (Using Griffin-Lim Vocoder):

    $ tts --text "Text for TTS" --model_path path/to/model.pth --config_path path/to/config.json --out_path output/path/speech.wav
  • Run your own TTS and Vocoder models:

    $ tts --text "Text for TTS" --model_path path/to/model.pth --config_path path/to/config.json --out_path output/path/speech.wav    --vocoder_path path/to/vocoder.pth --vocoder_config_path path/to/vocoder_config.json

Multi-speaker Models

  • List the available speakers and choose a <speaker_id> among them:

    $ tts --model_name "<language>/<dataset>/<model_name>"  --list_speaker_idxs
  • Run the multi-speaker TTS model with the target speaker ID:

    $ tts --text "Text for TTS." --out_path output/path/speech.wav --model_name "<language>/<dataset>/<model_name>"  --speaker_idx <speaker_id>
  • Run your own multi-speaker TTS model:

    $ tts --text "Text for TTS" --out_path output/path/speech.wav --model_path path/to/model.pth --config_path path/to/config.json --speakers_file_path path/to/speaker.json --speaker_idx <speaker_id>

Voice Conversion Models

$ tts --out_path output/path/speech.wav --model_name "<language>/<dataset>/<model_name>" --source_wav <path/to/speaker/wav> --target_wav <path/to/reference/wav>

Directory Structure

|- notebooks/       (Jupyter Notebooks for model evaluation, parameter selection and data analysis.)|- utils/           (common utilities.)|- TTS    |- bin/             (folder for all the executables.)      |- train*.py                  (train your target model.)      |- ...    |- tts/             (text to speech models)        |- layers/          (model layer definitions)        |- models/          (model definitions)        |- utils/           (model specific utilities.)    |- speaker_encoder/ (Speaker Encoder models.)        |- (same)    |- vocoder/         (Vocoder models.)        |- (same)

Packages

 
 
 

[8]ページ先頭

©2009-2026 Movatter.jp