|
1 | 1 | packagecom.thealgorithms.maths; |
| 2 | +importjava.util.*; |
2 | 3 |
|
3 | 4 | publicclassKaprekarNumbers { |
4 | 5 |
|
5 | 6 | /* This program demonstrates if a given number is Kaprekar Number or not. |
6 | 7 | Kaprekar Number: A Kaprekar number is an n-digit number which its square can be split into two parts where the right part has n |
7 | 8 | digits and sum of these parts is equal to the original number. */ |
8 | 9 |
|
9 | | -// Checks whether a given number is Kaprekar Number or not |
| 10 | +// Provides a list of kaprekarNumber in a range |
| 11 | +publicstaticArrayList<Long>kaprekarNumberInRange(longstart,longend)throwsException { |
| 12 | +longn =end-start; |
| 13 | +if (n <0)thrownewException("Invalid range"); |
| 14 | +ArrayList<Long>list =newArrayList<>(); |
| 15 | + |
| 16 | +for (longi =start;i <=end;i++) { |
| 17 | +if (isKaprekarNumber(i))list.add(i); |
| 18 | +} |
10 | 19 |
|
11 | | -publicstaticbooleanisKaprekarNumber(longnumber) { |
| 20 | +returnlist; |
| 21 | +} |
| 22 | + |
| 23 | +// Checks whether a given number is Kaprekar Number or not |
| 24 | +publicstaticbooleanisKaprekarNumber(longnumber) { |
12 | 25 | longnumberSquared =number *number; |
13 | 26 | if(Long.toString(number).length() ==Long.toString(numberSquared).length()){ |
14 | 27 | return (number ==numberSquared); |
15 | 28 | } |
16 | 29 | else{ |
17 | | -longleftDigits1 =0,leftDigits2 =0; |
| 30 | +longleftDigits1 =0,leftDigits2; |
18 | 31 | if(Long.toString(numberSquared).contains("0")){ |
19 | 32 | leftDigits1 =Long.parseLong(Long.toString(numberSquared).substring(0,Long.toString(numberSquared).indexOf("0"))); |
20 | 33 | } |
|