Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Hill_Cipher.java#94

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to ourterms of service andprivacy statement. We’ll occasionally send you account related emails.

Already on GitHub?Sign in to your account

Merged
Sirajmolla merged 1 commit intocoder2hacker:mainfromharshitgupta2000:main
Oct 2, 2022
Merged
Changes fromall commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
192 changes: 192 additions & 0 deletionsjava program/Hill_cipher.java
View file
Open in desktop
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,192 @@
import java.util.ArrayList;
import java.util.Scanner;
public class HillCipherExample {
//method to accept key matrix
private static int[][] getKeyMatrix() {
Scanner sc = new Scanner(System.in);
System.out.println("Enter key matrix:");
String key = sc.nextLine();
//int len = key.length();
double sq = Math.sqrt(key.length());
if (sq != (long) sq) {
System.out.println("Cannot Form a square matrix");
}
int len = (int) sq;
int[][] keyMatrix = new int[len][len];
int k = 0;
for (int i = 0; i < len; i++)
{
for (int j = 0; j < len; j++)
{
keyMatrix[i][j] = ((int) key.charAt(k)) - 97;
k++;
}
}
return keyMatrix;
}
// Below method checks whether the key matrix is valid (det=0)
private static void isValidMatrix(int[][] keyMatrix) {
int det = keyMatrix[0][0] * keyMatrix[1][1] - keyMatrix[0][1] * keyMatrix[1][0];
// If det=0, throw exception and terminate
if(det == 0) {
throw new java.lang.Error("Det equals to zero, invalid key matrix!");
}
}
// This method checks if the reverse key matrix is valid (matrix mod26 = (1,0,0,1)
private static void isValidReverseMatrix(int[][] keyMatrix, int[][] reverseMatrix) {
int[][] product = new int[2][2];
// Find the product matrix of key matrix times reverse key matrix
product[0][0] = (keyMatrix[0][0]*reverseMatrix[0][0] + keyMatrix[0][1] * reverseMatrix[1][0]) % 26;
product[0][1] = (keyMatrix[0][0]*reverseMatrix[0][1] + keyMatrix[0][1] * reverseMatrix[1][1]) % 26;
product[1][0] = (keyMatrix[1][0]*reverseMatrix[0][0] + keyMatrix[1][1] * reverseMatrix[1][0]) % 26;
product[1][1] = (keyMatrix[1][0]*reverseMatrix[0][1] + keyMatrix[1][1] * reverseMatrix[1][1]) % 26;
// Check if a=1 and b=0 and c=0 and d=1
// If not, throw exception and terminate
if(product[0][0] != 1 || product[0][1] != 0 || product[1][0] != 0 || product[1][1] != 1) {
throw new java.lang.Error("Invalid reverse matrix found!");
}
}
// This method calculates the reverse key matrix
private static int[][] reverseMatrix(int[][] keyMatrix) {
int detmod26 = (keyMatrix[0][0] * keyMatrix[1][1] - keyMatrix[0][1] * keyMatrix[1][0]) % 26; // Calc det
int factor;
int[][] reverseMatrix = new int[2][2];
// Find the factor for which is true that
// factor*det = 1 mod 26
for(factor=1; factor < 26; factor++)
{
if((detmod26 * factor) % 26 == 1)
{
break;
}
}
// Calculate the reverse key matrix elements using the factor found
reverseMatrix[0][0] = keyMatrix[1][1] * factor % 26;
reverseMatrix[0][1] = (26 - keyMatrix[0][1]) * factor % 26;
reverseMatrix[1][0] = (26 - keyMatrix[1][0]) * factor % 26;
reverseMatrix[1][1] = keyMatrix[0][0] * factor % 26;
return reverseMatrix;
}
// This method echoes the result of encrypt/decrypt
private static void echoResult(String label, int adder, ArrayList<Integer> phrase) {
int i;
System.out.print(label);
// Loop for each pair
for(i=0; i < phrase.size(); i += 2) {
System.out.print(Character.toChars(phrase.get(i) + (64 + adder)));
System.out.print(Character.toChars(phrase.get(i+1) + (64 + adder)));
if(i+2 <phrase.size()) {
System.out.print("-");
}
}
System.out.println();
}
// This method makes the actual encryption
public static void encrypt(String phrase, boolean alphaZero)
{
int i;
int adder = alphaZero ? 1 : 0; // For calclulations depending on the alphabet
int[][] keyMatrix;
ArrayList<Integer> phraseToNum = new ArrayList<>();
ArrayList<Integer> phraseEncoded = new ArrayList<>();
// Delete all non-english characters, and convert phrase to upper case
phrase = phrase.replaceAll("[^a-zA-Z]","").toUpperCase();

// If phrase length is not an even number, add "Q" to make it even
if(phrase.length() % 2 == 1) {
phrase += "Q";
}
// Get the 2x2 key matrix from sc
keyMatrix = getKeyMatrix();
// Check if the matrix is valid (det != 0)
isValidMatrix(keyMatrix);
// Convert characters to numbers according to their
// place in ASCII table minus 64 positions (A=65 in ASCII table)
// If we use A=0 alphabet, subtract one more (adder)
for(i=0; i < phrase.length(); i++) {
phraseToNum.add(phrase.charAt(i) - (64 + adder));
}
// Find the product per pair of the phrase with the key matrix modulo 26
// If we use A=1 alphabet and result is 0, replace it with 26 (Z)
for(i=0; i < phraseToNum.size(); i += 2) {
int x = (keyMatrix[0][0] * phraseToNum.get(i) + keyMatrix[0][1] * phraseToNum.get(i+1)) % 26;
int y = (keyMatrix[1][0] * phraseToNum.get(i) + keyMatrix[1][1] * phraseToNum.get(i+1)) % 26;
phraseEncoded.add(alphaZero ? x : (x == 0 ? 26 : x ));
phraseEncoded.add(alphaZero ? y : (y == 0 ? 26 : y ));
}
// Print the result
echoResult("Encoded phrase: ", adder, phraseEncoded);
}
// This method makes the actual decryption
public static void decrypt(String phrase, boolean alphaZero)
{
int i, adder = alphaZero ? 1 : 0;
int[][] keyMatrix, revKeyMatrix;
ArrayList<Integer> phraseToNum = new ArrayList<>();
ArrayList<Integer> phraseDecoded = new ArrayList<>();
// Delete all non-english characters, and convert phrase to upper case
phrase = phrase.replaceAll("[^a-zA-Z]","").toUpperCase();

// Get the 2x2 key matrix from sc
keyMatrix = getKeyMatrix();
// Check if the matrix is valid (det != 0)
isValidMatrix(keyMatrix);
// Convert numbers to characters according to their
// place in ASCII table minus 64 positions (A=65 in ASCII table)
// If we use A=0 alphabet, subtract one more (adder)
for(i=0; i < phrase.length(); i++) {
phraseToNum.add(phrase.charAt(i) - (64 + adder));
}
// Find the reverse key matrix
revKeyMatrix = reverseMatrix(keyMatrix);
// Check if the reverse key matrix is valid (product = 1,0,0,1)
isValidReverseMatrix(keyMatrix, revKeyMatrix);
// Find the product per pair of the phrase with the reverse key matrix modulo 26
for(i=0; i < phraseToNum.size(); i += 2) {
phraseDecoded.add((revKeyMatrix[0][0] * phraseToNum.get(i) + revKeyMatrix[0][1] * phraseToNum.get(i+1)) % 26);
phraseDecoded.add((revKeyMatrix[1][0] * phraseToNum.get(i) + revKeyMatrix[1][1] * phraseToNum.get(i+1)) % 26);
}
// Print the result
echoResult("Decoded phrase: ", adder, phraseDecoded);
}
//main method
public static void main(String[] args) {
String opt, phrase;
byte[] p;
Scanner sc = new Scanner(System.in);
System.out.println("Hill Cipher Implementation (2x2)");
System.out.println("-------------------------");
System.out.println("1. Encrypt text (A=0,B=1,...Z=25)");
System.out.println("2. Decrypt text (A=0,B=1,...Z=25)");
System.out.println("3. Encrypt text (A=1,B=2,...Z=26)");
System.out.println("4. Decrypt text (A=1,B=2,...Z=26)");
System.out.println();
System.out.println("Type any other character to exit");
System.out.println();
System.out.print("Select your choice: ");
opt = sc.nextLine();
switch (opt)
{
case "1":
System.out.print("Enter phrase to encrypt: ");
phrase = sc.nextLine();
encrypt(phrase, true);
break;
case "2":
System.out.print("Enter phrase to decrypt: ");
phrase = sc.nextLine();
decrypt(phrase, true);
break;
case "3":
System.out.print("Enter phrase to encrypt: ");
phrase = sc.nextLine();
encrypt(phrase, false);
break;
case "4":
System.out.print("Enter phrase to decrypt: ");
phrase = sc.nextLine();
decrypt(phrase, false);
break;
}
}
}

[8]ページ先頭

©2009-2025 Movatter.jp