Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up

CVPR 2018: Structure Inference Net for Object Detection

NotificationsYou must be signed in to change notification settings

choasup/SIN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

54 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Structure Inference Net: Object Detection Using Scene-level Context and Instance-level Relationships. In CVPR 2018.(http://vipl.ict.ac.cn/uploadfile/upload/2018041318013480.pdf)

Requirements: software

  1. Requirements for Tensorflow 1.3.0 (see:Tensorflow)

  2. Python packages you might not have:cython,python-opencv,easydict

Installation (sufficient for the demo)

  1. Clone the SIN repository
# Make sure to clone with --recursivegit clone --recursive https://github.com/choasUp/SIN.git
  1. Build the Cython modules
cd$SIN_ROOT/libmake

Demo

After successfully completingbasic installation, you'll be ready to run the demo.

Wait ...

Training Model

  1. Download the training, validation, test data and VOCdevkit

    wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tarwget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tarwget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCdevkit_08-Jun-2007.tar
  2. Extract all of these tars into one directory namedVOCdevkit

    tar xvf VOCtrainval_06-Nov-2007.tartar xvf VOCtest_06-Nov-2007.tartar xvf VOCdevkit_08-Jun-2007.tar
  3. It should have this basic structure

    $VOCdevkit/# development kit$VOCdevkit/VOCcode/# VOC utility code$VOCdevkit/VOC2007# image sets, annotations, etc.# ... and several other directories ...
  4. Create symlinks for the PASCAL VOC dataset

    cd$SIN_ROOT/dataln -s$VOCdevkit VOCdevkit
  5. Download the pre-trained ImageNet models[Google Drive][Dropbox]

     mv VGG_imagenet.npy$SIN_ROOT/data/pretrain_model/VGG_imagenet.npy
  6. [optional] Set learning rate and max iter

    vim experiments/scripts/faster_rcnn_end2end.sh# ITERSvim lib/fast/config.py# LRcd lib# if you edit the code, make bestmake
  7. Set your GPU id, then run script to train and test model

    cd$SIN_ROOTexport CUDA_VISIBLE_DEVICSE=0./train.sh
  8. Test your dataset

    ./test_all.sh

The result of testing on PASCAL VOC 2007 (VGG net)

AP for aeroplane = 0.7853AP for bicycle = 0.8045AP for bird = 0.7456AP for boat = 0.6657AP for bottle = 0.6144AP for bus = 0.8424AP for car = 0.8663AP for cat = 0.8894AP for chair = 0.5803AP for cow = 0.8466AP for diningtable = 0.7171AP for dog = 0.8578AP for horse = 0.8626AP for motorbike = 0.7802AP for person = 0.7857AP for pottedplant = 0.4869AP for sheep = 0.7599AP for sofa = 0.7351AP for train = 0.8199AP for tvmonitor = 0.7683Mean AP = 0.7607

References

Faster R-CNN caffe version

Faster R-CNN tf version

Citation

Yong Liu, Ruiping Wang, Shiguang Shan, and Xilin Chen. Structure Inference Net: Object Detection Using Scene-level Context and Instance-level Relationships. In CVPR 2018.

About

CVPR 2018: Structure Inference Net for Object Detection

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

[8]ページ先頭

©2009-2025 Movatter.jp