- Notifications
You must be signed in to change notification settings - Fork47
choasup/SIN
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
Structure Inference Net: Object Detection Using Scene-level Context and Instance-level Relationships. In CVPR 2018.(http://vipl.ict.ac.cn/uploadfile/upload/2018041318013480.pdf)
Requirements for Tensorflow 1.3.0 (see:Tensorflow)
Python packages you might not have:
cython
,python-opencv
,easydict
- Clone the SIN repository
# Make sure to clone with --recursivegit clone --recursive https://github.com/choasUp/SIN.git
- Build the Cython modules
cd$SIN_ROOT/libmake
After successfully completingbasic installation, you'll be ready to run the demo.
Wait ...
Download the training, validation, test data and VOCdevkit
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tarwget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tarwget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCdevkit_08-Jun-2007.tar
Extract all of these tars into one directory named
VOCdevkit
tar xvf VOCtrainval_06-Nov-2007.tartar xvf VOCtest_06-Nov-2007.tartar xvf VOCdevkit_08-Jun-2007.tar
It should have this basic structure
$VOCdevkit/# development kit$VOCdevkit/VOCcode/# VOC utility code$VOCdevkit/VOC2007# image sets, annotations, etc.# ... and several other directories ...
Create symlinks for the PASCAL VOC dataset
cd$SIN_ROOT/dataln -s$VOCdevkit VOCdevkit
Download the pre-trained ImageNet models[Google Drive][Dropbox]
mv VGG_imagenet.npy$SIN_ROOT/data/pretrain_model/VGG_imagenet.npy
[optional] Set learning rate and max iter
vim experiments/scripts/faster_rcnn_end2end.sh# ITERSvim lib/fast/config.py# LRcd lib# if you edit the code, make bestmake
Set your GPU id, then run script to train and test model
cd$SIN_ROOTexport CUDA_VISIBLE_DEVICSE=0./train.sh
Test your dataset
./test_all.sh
AP for aeroplane = 0.7853AP for bicycle = 0.8045AP for bird = 0.7456AP for boat = 0.6657AP for bottle = 0.6144AP for bus = 0.8424AP for car = 0.8663AP for cat = 0.8894AP for chair = 0.5803AP for cow = 0.8466AP for diningtable = 0.7171AP for dog = 0.8578AP for horse = 0.8626AP for motorbike = 0.7802AP for person = 0.7857AP for pottedplant = 0.4869AP for sheep = 0.7599AP for sofa = 0.7351AP for train = 0.8199AP for tvmonitor = 0.7683Mean AP = 0.7607
Yong Liu, Ruiping Wang, Shiguang Shan, and Xilin Chen. Structure Inference Net: Object Detection Using Scene-level Context and Instance-level Relationships. In CVPR 2018.