- Notifications
You must be signed in to change notification settings - Fork80
chester256/Model-Compression-Papers
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
Papers for neural network compression and acceleration. Partly based onlink.
- Efficient Deep Learning: A Survey on Making Deep Learning Models Smaller, Faster, and Better, [arXiv '21]
- Recent Advances in Efficient Computation of Deep Convolutional Neural Networks, [arxiv '18]
- A Survey of Model Compression and Acceleration for Deep Neural Networks [arXiv '17]
- The ZipML Framework for Training Models with End-to-End Low Precision: The Cans, the Cannots, and a Little Bit of Deep Learning [ICML'17]
- Compressing Deep Convolutional Networks using Vector Quantization [arXiv'14]
- Quantized Convolutional Neural Networks for Mobile Devices [CVPR '16]
- Fixed-Point Performance Analysis of Recurrent Neural Networks [ICASSP'16]
- Quantized Neural Networks: Training Neural Networks with Low Precision Weights and Activations [arXiv'16]
- Loss-aware Binarization of Deep Networks [ICLR'17]
- Towards the Limit of Network Quantization [ICLR'17]
- Deep Learning with Low Precision by Half-wave Gaussian Quantization [CVPR'17]
- ShiftCNN: Generalized Low-Precision Architecture for Inference of Convolutional Neural Networks [arXiv'17]
- Training and Inference with Integers in Deep Neural Networks [ICLR'18]
- Deep Learning with Limited Numerical Precision[ICML'2015]
- Model compression via distillation and quantization [ICLR '18]
- Apprentice: Using Knowledge Distillation Techniques To Improve Low-Precision Network Accuracy [ICLR '18]
- On the Universal Approximability of Quantized ReLU Neural Networks [arXiv '18]
- Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [CVPR '18]
- Learning both Weights and Connections for Efficient Neural Networks [NIPS'15]
- Pruning Filters for Efficient ConvNets [ICLR'17]
- Pruning Convolutional Neural Networks for Resource Efficient Inference [ICLR'17]
- Soft Weight-Sharing for Neural Network Compression [ICLR'17]
- Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding [ICLR'16]
- Dynamic Network Surgery for Efficient DNNs [NIPS'16]
- Designing Energy-Efficient Convolutional Neural Networks using Energy-Aware Pruning [CVPR'17]
- ThiNet: A Filter Level Pruning Method for Deep Neural Network Compression [ICCV'17]
- To prune, or not to prune: exploring the efficacy of pruning for model compression [ICLR'18]
- Data-Driven Sparse Structure Selection for Deep Neural Networks [arXiv '17]
- Learning Structured Sparsity in Deep Neural Networks [NIPS '16]
- Scalpel: Customizing DNN Pruning to the Underlying Hardware Parallelism [ISCA '17]
- Channel Pruning for Accelerating Very Deep Neural Networks [ICCV '17]
- Learning Efficient Convolutional Networks through Network Slimming [ICCV '17]
- NISP: Pruning Networks using Neuron Importance Score Propagation [CVPR '18]
- Rethinking the Smaller-Norm-Less-Informative Assumption in Channel Pruning of Convolution Layers [ICLR '18]
- MorphNet: Fast & Simple Resource-Constrained Structure Learning of Deep Networks [arXiv '17]
- Efficient Sparse-Winograd Convolutional Neural Networks [ICLR '18]
- “Learning-Compression” Algorithms for Neural Net Pruning [CVPR '18]
- Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1 [NIPS '16]
- XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks [ECCV '16]
- Binarized Convolutional Neural Networks with Separable Filters for Efficient Hardware Acceleration [CVPR '17]
- Efficient and Accurate Approximations of Nonlinear Convolutional Networks [CVPR'15]
- Accelerating Very Deep Convolutional Networks for Classification and Detection (Extended version of above one)
- Convolutional neural networks with low-rank regularization [arXiv'15]
- Exploiting Linear Structure Within Convolutional Networks for Efficient Evaluation [NIPS'14]
- Compression of Deep Convolutional Neural Networks for Fast and Low Power Mobile Applications [ICLR'16]
- High performance ultra-low-precision convolutions on mobile devices [NIPS'17]
- Speeding up convolutional neural networks with low rank expansions
- Coordinating Filters for Faster Deep Neural Networks [ICCV '17]
- Dark knowledge
- FitNets: Hints for Thin Deep Nets [ICLR '15]
- Net2net: Accelerating learning via knowledge transfer [ICLR '16]
- Distilling the Knowledge in a Neural Network [NIPS '15]
- MobileID: Face Model Compression by Distilling Knowledge from Neurons [AAAI '16]
- DarkRank: Accelerating Deep Metric Learning via Cross Sample Similarities Transfer [arXiv '17]
- Deep Model Compression: Distilling Knowledge from Noisy Teachers [arXiv '16]
- Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Transfer [ICLR '17]
- Like What You Like: Knowledge Distill via Neuron Selectivity Transfer [arXiv '17]
- Learning Efficient Object Detection Models with Knowledge Distillation [NIPS '17]
- Data-Free Knowledge Distillation For Deep Neural Networks [NIPS '17]
- A Gift from Knowledge Distillation: Fast Optimization, Network Minimization and Transfer Learnin [CVPR '17]
- Moonshine: Distilling with Cheap Convolutions [arXiv '17]
- Model compression via distillation and quantization [ICLR '18]
- Apprentice: Using Knowledge Distillation Techniques To Improve Low-Precision Network Accuracy [ICLR '18]
About
Papers for deep neural network compression and acceleration
Topics
Resources
Uh oh!
There was an error while loading.Please reload this page.
Stars
Watchers
Forks
Releases
No releases published
Packages0
No packages published