- Notifications
You must be signed in to change notification settings - Fork29
minLoRA: a minimal PyTorch library that allows you to apply LoRA to any PyTorch model.
License
NotificationsYou must be signed in to change notification settings
changjonathanc/minLoRA
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
A minimal, but versatile PyTorch re-implementation ofLoRA. In only ~100 lines of code, minLoRA supports the following features:
- Functional, no need to modify the model definition
- Works everywhere, as long as you use
torch.nn.Module
- PyTorch native, uses PyTorch's
torch.nn.utils.parametrize
to do all the heavy lifting - Easily extendable, you can add your own LoRA parameterization
- Supports training, inference, and inference with multiple LoRA models
demo.ipynb
shows the basic usage of the libraryadvanced_usage.ipynb
shows how you can add LoRA to other layers such as embedding, and how to tie weights
- Finetuning GPT using LoRA + nanoGPT:https://github.com/cccntu/LoRAnanoGPT/pull/1/files
If you want toimport minlora
into your project:
git clone https://github.com/cccntu/minLoRA.gitcd minLoRApip install -e .
importtorchfromminloraimportadd_lora,apply_to_lora,disable_lora,enable_lora,get_lora_params,merge_lora,name_is_lora,remove_lora,load_multiple_lora,select_lora
model=torch.nn.Linear(in_features=5,out_features=3)# Step 1: Add LoRA to the modeladd_lora(model)# Step 2: Collect the parameters, pass them to the optimizerparameters= [ {"params":list(get_lora_params(model))},]optimizer=torch.optim.AdamW(parameters,lr=1e-3)# Step 3: Train the model# ...# Step 4: export the LoRA parameterslora_state_dict=get_lora_state_dict(model)
# Step 1: Add LoRA to your modeladd_lora(model)# Step 2: Load the LoRA parameters_=model.load_state_dict(lora_state_dict,strict=False)# Step 3: Merge the LoRA parameters into the modelmerge_lora(model)
# to avoid re-adding lora to the model when rerun the cell, remove lora firstremove_lora(model)# Step 1: Add LoRA to your modeladd_lora(model)# Step 2: Load the LoRA parameters# load three sets of LoRA parameterslora_state_dicts= [lora_state_dict_0,lora_state_dict_1,lora_state_dict_2]load_multiple_lora(model,lora_state_dicts)# Step 3: Select which LoRA to use at inference timeY0=select_lora(model,0)(x)Y1=select_lora(model,1)(x)Y2=select_lora(model,2)(x)
- microsoft/LoRA has the official implementation of LoRA, in PyTorch
- karpathy/minGPT the structure of the repo is adapted from minGPT
- A notebook to show how to configure LoRA parameters
- Real training & inference examples
About
minLoRA: a minimal PyTorch library that allows you to apply LoRA to any PyTorch model.
Topics
Resources
License
Uh oh!
There was an error while loading.Please reload this page.
Stars
Watchers
Forks
Releases
No releases published
Packages0
No packages published
Uh oh!
There was an error while loading.Please reload this page.
Contributors2
Uh oh!
There was an error while loading.Please reload this page.