- Notifications
You must be signed in to change notification settings - Fork13
Recursive Partitioning for Structural Equation Models
License
brandmaier/semtree
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
An R package for estimating Structural Equation Model (SEM) Trees andForests. They are a fusion of SEM and decision trees, or SEM and randomforests respectively. While SEM is a confirmatory modeling technique,SEM trees and forests allow to explore whether there are predictors thatprovide further information about an initial, theory-based model.Potential use cases are the search for potential predictors that explainindividual differences, finding omitted variables in a model, orexploring measurement invariance over a large set of predictors. Arecent overview is in our latest book chapter in the SEM handbook(Brandmaier & Jacobucci, 2023).
Install the latest stable version from CRAN:
install.packages("semtree")
To install the latest semtree package directly from GitHub, copy thefollowing line into R:
library(devtools)devtools::install_github("brandmaier/semtree")# even better: install with package vignette (extra documentation)devtools::install_github("brandmaier/semtree",force=TRUE, build_opts = c())
Package documentation and use-cases with runnable R code can be found onour github pages:https://brandmaier.github.io/semtree/.
Package vignettes (shipped with the package) contain documentation onhow to use the package. Simply type this in R once you have loaded thepackage:
browseVignettes("semtree")
Theory and method:
Brandmaier, A. M., & Jacobucci, R. C. (2023). Machine-learningapproaches to structural equation modeling. In R. H. Hoyle (Ed.),Handbook of structural equation modeling (2nd rev. ed.,pp. 722–739). Guilford Press.
Arnold, M., Voelkle, M.C., and Brandmaier, A.M. (2021). Score-guidedstructural equation model trees.Frontiers in psychology, 11,564403.
Brandmaier, A. M., Driver, C., & Voelkle, M. C. (2019). Recursivepartitioning in continuous time analysis. In K. van Montfort, J.Oud, & M. C. Voelkle (Eds.), Continuous time modeling in thebehavioral and related sciences. New York: Springer.
Brandmaier, A. M., Prindle, J. J., McArdle, J. J., &Lindenberger, U. (2016). Theory-guided exploration with structuralequation model forests.Psychological Methods, 21, 566-582.
Brandmaier, A. M., von Oertzen, T., McArdle, J. J., &Lindenberger, U. (2014). Exploratory data mining with structuralequation model trees. In J. J. McArdle & G. Ritschard (Eds.),Contemporary issues in exploratory data mining in the behavioralsciences (pp. 96-127). New York: Routledge.
Brandmaier, A. M., von Oertzen, T., McArdle, J. J., &Lindenberger, U. (2013). Structural equation model trees.Psychological Methods, 18, 71-86.
Applied examples (there are many more):
Brandmaier, A. M., Ram, N., Wagner, G. G., & Gerstorf, D. (2017).Terminal decline in well-being: The role of multi-indicatorconstellations of physical health and psychosocial correlates.Developmental Psychology.
About
Recursive Partitioning for Structural Equation Models
Topics
Resources
License
Uh oh!
There was an error while loading.Please reload this page.
Stars
Watchers
Forks
Packages0
Uh oh!
There was an error while loading.Please reload this page.
Contributors7
Uh oh!
There was an error while loading.Please reload this page.