Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up

Recursive Partitioning for Structural Equation Models

License

NotificationsYou must be signed in to change notification settings

brandmaier/semtree

Repository files navigation

DOIcran versionrstudio mirror downloadsR-CMD-checkCode sizeDownloads

contributionsLicense: GPL v3

What is this?

An R package for estimating Structural Equation Model (SEM) Trees andForests. They are a fusion of SEM and decision trees, or SEM and randomforests respectively. While SEM is a confirmatory modeling technique,SEM trees and forests allow to explore whether there are predictors thatprovide further information about an initial, theory-based model.Potential use cases are the search for potential predictors that explainindividual differences, finding omitted variables in a model, orexploring measurement invariance over a large set of predictors. Arecent overview is in our latest book chapter in the SEM handbook(Brandmaier & Jacobucci, 2023).

Install

Install the latest stable version from CRAN:

install.packages("semtree")

To install the latest semtree package directly from GitHub, copy thefollowing line into R:

library(devtools)devtools::install_github("brandmaier/semtree")# even better: install with package vignette (extra documentation)devtools::install_github("brandmaier/semtree",force=TRUE, build_opts = c())

Usage

Package documentation and use-cases with runnable R code can be found onour github pages:https://brandmaier.github.io/semtree/.

Package vignettes (shipped with the package) contain documentation onhow to use the package. Simply type this in R once you have loaded thepackage:

browseVignettes("semtree")

References

Theory and method:

  • Brandmaier, A. M., & Jacobucci, R. C. (2023). Machine-learningapproaches to structural equation modeling. In R. H. Hoyle (Ed.),Handbook of structural equation modeling (2nd rev. ed.,pp. 722–739). Guilford Press.

  • Arnold, M., Voelkle, M.C., and Brandmaier, A.M. (2021). Score-guidedstructural equation model trees.Frontiers in psychology, 11,564403.

  • Brandmaier, A. M., Driver, C., & Voelkle, M. C. (2019). Recursivepartitioning in continuous time analysis. In K. van Montfort, J.Oud, & M. C. Voelkle (Eds.), Continuous time modeling in thebehavioral and related sciences. New York: Springer.

  • Brandmaier, A. M., Prindle, J. J., McArdle, J. J., &Lindenberger, U. (2016). Theory-guided exploration with structuralequation model forests.Psychological Methods, 21, 566-582.

  • Brandmaier, A. M., von Oertzen, T., McArdle, J. J., &Lindenberger, U. (2014). Exploratory data mining with structuralequation model trees. In J. J. McArdle & G. Ritschard (Eds.),Contemporary issues in exploratory data mining in the behavioralsciences (pp. 96-127). New York: Routledge.

  • Brandmaier, A. M., von Oertzen, T., McArdle, J. J., &Lindenberger, U. (2013). Structural equation model trees.Psychological Methods, 18, 71-86.

Applied examples (there are many more):

Brandmaier, A. M., Ram, N., Wagner, G. G., & Gerstorf, D. (2017).Terminal decline in well-being: The role of multi-indicatorconstellations of physical health and psychosocial correlates.Developmental Psychology.


[8]ページ先頭

©2009-2025 Movatter.jp