- Notifications
You must be signed in to change notification settings - Fork13
Read text files in Epanet's .inp and .rpt formats into R
License
bradleyjeck/epanetReader
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Repository files navigation
epanetReader is an R package for reading water network simulation datain Epanet’s .inp and .rpt formats into R. Some basic summary informationand plots are also provided.
Epanet is a highly popular tool for water network simulation. But, itcan be difficult to access network information for subsequent analysisand visualization. This is a real strength of R however, and there manytools already existing in R to support analysis and visualization.
In addition to this README page, information about epanetReader isavailable fromEnvironmental Modelling &Software(pdf) andASCEConferenceProceedings(pdf).
- the latest released version: install.packages(“epanetReader”)
- the development version:devtools::install_github(“bradleyjeck/epanetReader”)
Read network information from an .inp file with a similar syntax as thepopular read.table or read.csv functions. Note that the example networkone that ships with Epanet causes a warning. The warning is just areminder of how R deals with integer IDs.
library(epanetReader)n1<- read.inp("Net1.inp")
## Warning in PATTERNS(allLines): patterns have integer IDs, see ?epanet.inp## Warning in CURVES(allLines): curves have integer IDs, see ?epanet.inpRetrieve summary information about the network.
summary(n1)## EPANET Example Network 1## A simple example of modeling chlorine decay. Both bulk and## wall reactions are included.## ## Number## Junctions 9## Tanks 1## Reservoirs 1## Pipes 12## Pumps 1## Quality 11## Coordinates 11## Labels 3A basic network plot is also available
plot(n1)The read.inp function returns an object with structure similar to the.inp file itself. A section in the .inp file corresponds to a namedentry in the list. These entries are accessed using the $ syntax ofR.
names(n1)## [1] "Title" "Junctions" "Tanks" "Reservoirs" "Pipes" ## [6] "Pumps" "Valves" "Demands" "Patterns" "Curves" ## [11] "Controls" "Rules" "Energy" "Status" "Emitters" ## [16] "Quality" "Sources" "Reactions" "Mixing" "Times" ## [21] "Report" "Options" "Coordinates" "Vertices" "Labels" ## [26] "Backdrop" "Tags"Sections of the .inp file are stored as a data.frame or charactervector. For example, the junction table is stored as a data.frame andretrieved as follows. In this case patterns were not specified in thejunction table and so are marked NA.
n1$Junctions
## ID Elevation Demand Pattern## 1 10 710 0 NA## 2 11 710 150 NA## 3 12 700 150 NA## 4 13 695 100 NA## 5 21 700 150 NA## 6 22 695 200 NA## 7 23 690 150 NA## 8 31 700 100 NA## 9 32 710 100 NAA summary of the junction table shows that Net1.inp has nine junctionswith elevations ranging from 690 to 710 and demands ranging from 0 to200. Note that the node ID is stored as a character rather than aninteger orfactor.
summary(n1$Junctions)
## ID Elevation Demand Pattern ## Length:9 Min. :690.0 Min. : 0.0 Mode:logical ## Class :character 1st Qu.:695.0 1st Qu.:100.0 NA's:9 ## Mode :character Median :700.0 Median :150.0 ## Mean :701.1 Mean :122.2 ## 3rd Qu.:710.0 3rd Qu.:150.0 ## Max. :710.0 Max. :200.0Results of the network simulation specified in Net.inp may be stored inNet1.rpt by running Epanet from the command line. Note that the reportsection of the .inp file should contain the following lines in order togenerate output readable by this package.
[REPORT]
Page 0
Links All
Nodes All
On windows, calling the epanet executable epanet2d runs the simulation.
>epanet2d Net1.inp Net1.rpt ... EPANET Version 2.0 o Retrieving network data o Computing hydraulics o Computing water quality o Writing output report to Net1.rpt... EPANET completed.The .rpt file generated by Epanet may be read into R using read.rpt().The simulation is summarized over junctions, tanks and pipes.
n1r<- read.rpt("Net1.rpt") summary(n1r)
## Contains node results for 25 time steps ## ## Summary of Junction Results: ## Demand Pressure Chlorine ## Min. : 0.0 Min. :106.8 Min. :0.1500 ## 1st Qu.: 80.0 1st Qu.:116.1 1st Qu.:0.3500 ## Median :120.0 Median :119.8 Median :0.5100 ## Mean :122.2 Mean :119.6 Mean :0.5434 ## 3rd Qu.:160.0 3rd Qu.:123.0 3rd Qu.:0.7400 ## Max. :320.0 Max. :133.9 Max. :1.0000 ## ## Summary of Tank Results:## Demand Pressure Chlorine ## Min. :-1100.000 Min. :48.22 Min. :0.590 ## 1st Qu.: -660.000 1st Qu.:52.00 1st Qu.:0.660 ## Median : 258.000 Median :55.52 Median :0.750 ## Mean : -5.741 Mean :54.86 Mean :0.764 ## 3rd Qu.: 505.380 3rd Qu.:57.54 3rd Qu.:0.850 ## Max. : 1029.420 Max. :60.04 Max. :1.000 ## ## Contains link results for 25 time steps ## ## Summary of Pipe Results:## Flow Velocity Headloss ## Min. :-1029.42 Min. :0.0000 Min. :0.000 ## 1st Qu.: 41.37 1st Qu.:0.3475 1st Qu.:0.110 ## Median : 113.08 Median :0.5700 Median :0.300 ## Mean : 245.35 Mean :0.8070 Mean :0.644 ## 3rd Qu.: 237.23 3rd Qu.:1.0075 3rd Qu.:0.755 ## Max. : 1909.42 Max. :2.7300 Max. :3.210 ## ## Energy Usage:## Pump usageFactor avgEfficiency kWh_per_Mgal avg_kW peak_kW dailyCost## 1 9 57.71 75 880.42 96.25 96.71 0The default plot of simulation results is a map for time period00:00:00. Note that the object created from the .inp file is a requiredargument to make the plot.
plot(n1r,n1)
In contrast to the treatment of .inp files described above, data from.rpt files is stored using a slightly different structure than the .rptfile. The function returns an object (list) with a data.frame for noderesults and data.frame for link results. These two data frames containresults from all the time periods. This storage choice was made tofacilitate time series plots.
Entries in the epanet.rpt object (list) created by read.rpt() are foundusing the names() function.
names(n1r)## [1] "nodeResults" "linkResults" "energyUsage"Results for a chosen time period can be retrieved using the subsetfunction.
subset(n1r$nodeResults,Timestamp=="0:00:00")
## ID Demand Head Pressure Chlorine note Timestamp timeInSeconds## 1 10 0.00 1004.35 127.54 0.5 0:00:00 0## 2 11 150.00 985.23 119.26 0.5 0:00:00 0## 3 12 150.00 970.07 117.02 0.5 0:00:00 0## 4 13 100.00 968.87 118.67 0.5 0:00:00 0## 5 21 150.00 971.55 117.66 0.5 0:00:00 0## 6 22 200.00 969.08 118.76 0.5 0:00:00 0## 7 23 150.00 968.65 120.74 0.5 0:00:00 0## 8 31 100.00 967.39 115.86 0.5 0:00:00 0## 9 32 100.00 965.69 110.79 0.5 0:00:00 0## 10 9 -1866.18 800.00 0.00 1.0 Reservoir 0:00:00 0## 11 2 766.18 970.00 52.00 1.0 Tank 0:00:00 0## nodeType## 1 Junction## 2 Junction## 3 Junction## 4 Junction## 5 Junction## 6 Junction## 7 Junction## 8 Junction## 9 Junction## 10 Reservoir## 11 TankA comparison with the corresponding entry of the .rpt file, shown belowfor reference, shows that four columns have been added to the table.These pieces of extra info make visualizing the results easier.
Node Results at 0:00:00 hrs: -------------------------------------------------------- Demand Head Pressure Chlorine Node gpm ft psi mg/L -------------------------------------------------------- 10 0.00 1004.35 127.54 0.50 11 150.00 985.23 119.26 0.50 12 150.00 970.07 117.02 0.50 13 100.00 968.87 118.67 0.50 21 150.00 971.55 117.66 0.50 22 200.00 969.08 118.76 0.50 23 150.00 968.65 120.74 0.50 31 100.00 967.39 115.86 0.50 32 100.00 965.69 110.79 0.50 9 -1866.18 800.00 0.00 1.00 Reservoir 2 766.18 970.00 52.00 1.00 TankResults of a multi-species simulation by Epanet-msx can be read as well.
The read.msxrpt() function creates an s3 object of class epanetmsx.rpt.Similar to the approach above, there is a data frame for node resultsand link results.
The ggplot2 package makes it easy to create complex graphics by allowingusers to describe the plot in terms of the data. Continuing the Net1example Here we plot chlorine concentration over time at each node inthe network.
library(ggplot2)qplot(data=n1r$nodeResults,x=timeInSeconds/3600,y=Chlorine,facets=~ID,xlab="Hour")
The animation package is useful for creating a video from successiveplots.
# example with animation packagelibrary(animation)#unique time stampsts<- unique((n1r$nodeResults$Timestamp))imax<- length(ts)# generate animation of plots at each time stepsaveHTML(for(iin1:imax){ plot(n1r,n1,Timestep=ts[i]) })
Rossman, L. A. (2000)Epanet 2 usersmanual. US EPA,Cincinnati, Ohio.
About
Read text files in Epanet's .inp and .rpt formats into R
Topics
Resources
License
Contributing
Uh oh!
There was an error while loading.Please reload this page.
Stars
Watchers
Forks
Packages0
Contributors3
Uh oh!
There was an error while loading.Please reload this page.


