Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

A General Unified Threshold model of Survival (GUTS) for Bees

License

NotificationsYou must be signed in to change notification settings

bgoussen/BeeGUTS

Repository files navigation

Lifecycle: stableGitHub R package versionCRAN statusR-CMD-check

The goal of BeeGUTS is to analyse the survival toxicity tests performedfor bee species. It can be used to fit a Toxicokinetic-Toxicodynamic(TKTD) model adapted for bee standard studies (acute oral, acutecontact, and chronic oral studies). The TKTD model used is the GeneralUnified Threshold model of Survival (GUTS).

The model is based on the following publications:

  • Baas, J., Goussen, B., Taenzler, V., Roeben, V., Miles, M., Preuss,T.G., van den Berg, S. and Roessink, I. (2024), Comparing Sensitivityof Different Bee Species to Pesticides: A TKTD modeling approach.Environ Toxicol Chem, 43: 1431-1441.https://doi.org/10.1002/etc.5871

  • Baas, J., Goussen, B., Miles, M., Preuss, T.G. and Roessink, I.(2022), BeeGUTS—A Toxicokinetic–Toxicodynamic Model for theInterpretation and Integration of Acute and Chronic Honey Bee Tests.Environ Toxicol Chem, 41: 2193-2201.https://doi.org/10.1002/etc.5423

  • Jager T, Albert C, Preuss TG, Ashauer R. General unified thresholdmodel of survival–a toxicokinetic-toxicodynamic framework forecotoxicology. Environ Sci Technol. 2011 Apr 1;45(7):2529-40. doi:10.1021/es103092a. Epub 2011 Mar 2. PMID: 21366215.

Installation

You can install the released version of BeeGUTS fromCRAN with:

install.packages("BeeGUTS")

And the development version fromGitHub with:

# install.packages("devtools")devtools::install_github("bgoussen/BeeGUTS")

Documentation

Detailed documentation is availablehere

Example

This is a basic example which shows you how to solve a common problem:

library(BeeGUTS)#> BeeGUTS (Version 1.3.0, packaged on the: )#> - For execution on a local, multicore CPU with excess RAM we recommend calling#>       options(mc.cores = parallel::detectCores()-1)#> - In addition to the functions provided by 'BeeGUTS', we recommend using the packages:#>    - 'bayesplot' for posterior analysis, model checking, and MCMC diagnostics.#>    - 'loo' for leave-one-out cross-validation (LOO) using Pareto smoothed#>        importance sampling (PSIS), comparison of predictive errors between models, and#>        widely applicable information criterion (WAIC).file_location<- system.file("extdata","betacyfluthrin_chronic_ug.txt",package="BeeGUTS")# Load the path to one of the example filelsData<- dataGUTS(file_location=file_location,test_type='Chronic_Oral',cstConcCal=FALSE)# Read the example fileplot(lsData)# Plot the data#> [[1]]

fit<- fitBeeGUTS(lsData,modelType="SD",nIter=3000,nChains=1)# Fit a SD model. This can take some time...#>#> SAMPLING FOR MODEL 'GUTS_SD' NOW (CHAIN 1).#> Chain 1:#> Chain 1: Gradient evaluation took 0.001194 seconds#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 11.94 seconds.#> Chain 1: Adjust your expectations accordingly!#> Chain 1:#> Chain 1:#> Chain 1: Iteration:    1 / 3000 [  0%]  (Warmup)#> Chain 1: Iteration:  300 / 3000 [ 10%]  (Warmup)#> Chain 1: Iteration:  600 / 3000 [ 20%]  (Warmup)#> Chain 1: Iteration:  900 / 3000 [ 30%]  (Warmup)#> Chain 1: Iteration: 1200 / 3000 [ 40%]  (Warmup)#> Chain 1: Iteration: 1500 / 3000 [ 50%]  (Warmup)#> Chain 1: Iteration: 1501 / 3000 [ 50%]  (Sampling)#> Chain 1: Iteration: 1800 / 3000 [ 60%]  (Sampling)#> Chain 1: Iteration: 2100 / 3000 [ 70%]  (Sampling)#> Chain 1: Iteration: 2400 / 3000 [ 80%]  (Sampling)#> Chain 1: Iteration: 2700 / 3000 [ 90%]  (Sampling)#> Chain 1: Iteration: 3000 / 3000 [100%]  (Sampling)#> Chain 1:#> Chain 1:  Elapsed Time: 165.434 seconds (Warm-up)#> Chain 1:                81.417 seconds (Sampling)#> Chain 1:                246.851 seconds (Total)#> Chain 1:#> Warning: Bulk Effective Samples Size (ESS) is too low, indicating posterior means and medians may be unreliable.#> Running the chains for more iterations may help. See#> https://mc-stan.org/misc/warnings.html#bulk-ess#> Warning: Tail Effective Samples Size (ESS) is too low, indicating posterior variances and tail quantiles may be unreliable.#> Running the chains for more iterations may help. See#> https://mc-stan.org/misc/warnings.html#tail-esstraceplot(fit)# Produce a diagnostic plot of the fit

plot(fit)# Plot the fit results#> [[1]]

summary(fit)# Gives a summary of the results#> Computing summary can take some time. Please be patient...Summary:#>#> Bayesian Inference performed with Stan.#>  Model type: SD#>  Bee species: Honey_Bee#>#>  MCMC sampling setup (select with '$setupMCMC')#>  Iterations: 3000#>  Warmup iterations: 1500#>  Thinning interval: 1#>  Number of chains: 1#>#> Priors of the parameters (quantiles) (select with '$Qpriors'):#>#>  parameters      median        Q2.5       Q97.5#>          hb 8.32763e-03 1.09309e-04 6.34432e-01#>          kd 2.62826e-03 1.17073e-06 5.90041e+00#>          zw 8.24621e-03 1.19783e-06 5.67693e+01#>          bw 1.84061e-03 1.69711e-06 1.99625e+00#>#> Posteriors of the parameters (quantiles) (select with '$Qposteriors'):#>#>  parameters      median        Q2.5       Q97.5#>       hb[1] 6.90363e-03 2.36523e-03 9.96659e-03#>  parameters      median        Q2.5       Q97.5#>          kd 1.00619e+00 7.33489e-01 2.48421e+00#>          zw 9.46929e+00 5.59388e+00 1.07653e+01#>          bw 8.86478e-03 6.19304e-03 1.05303e-02#>#>#>  Maximum Rhat computed (na.rm = TRUE): 1.070234#>  Minimum Bulk_ESS: 35#>  Minimum Tail_ESS: 19#>  Bulk_ESS and Tail_ESS are crude measures of effecting sampling size for#>       bulk and tail quantities respectively. An ESS > 100 per chain can be#>       considered as a good indicator. Rhat is an indicator of chains convergence.#>       A Rhat <= 1.05 is a good indicator of convergence. For detail results,#>       one can call 'rstan::monitor(YOUR_beeSurvFit_OBJECT$stanFit)#>#>  EFSA Criteria (PPC, NRMSE, and SPPE) can be accessed via 'x$EFSA'validation<- validate(fit,lsData,fithb=TRUE)# produce a validation of the fit after refitting background mortality from the control data (here it uses the same dataset as calibration as an example, so not relevant…)#> Fitting the background mortality parameter on the control data of the#>         validation dataset.#> Warning in lsOUT$nDatasets <- nDatasets: Wandle linke Seite in eine Liste um#>#> SAMPLING FOR MODEL 'GUTS_hb_only' NOW (CHAIN 1).#> Chain 1:#> Chain 1: Gradient evaluation took 1.9e-05 seconds#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.19 seconds.#> Chain 1: Adjust your expectations accordingly!#> Chain 1:#> Chain 1:#> Chain 1: Iteration:    1 / 3000 [  0%]  (Warmup)#> Chain 1: Iteration:  300 / 3000 [ 10%]  (Warmup)#> Chain 1: Iteration:  600 / 3000 [ 20%]  (Warmup)#> Chain 1: Iteration:  900 / 3000 [ 30%]  (Warmup)#> Chain 1: Iteration: 1200 / 3000 [ 40%]  (Warmup)#> Chain 1: Iteration: 1500 / 3000 [ 50%]  (Warmup)#> Chain 1: Iteration: 1501 / 3000 [ 50%]  (Sampling)#> Chain 1: Iteration: 1800 / 3000 [ 60%]  (Sampling)#> Chain 1: Iteration: 2100 / 3000 [ 70%]  (Sampling)#> Chain 1: Iteration: 2400 / 3000 [ 80%]  (Sampling)#> Chain 1: Iteration: 2700 / 3000 [ 90%]  (Sampling)#> Chain 1: Iteration: 3000 / 3000 [100%]  (Sampling)#> Chain 1:#> Chain 1:  Elapsed Time: 0.117 seconds (Warm-up)#> Chain 1:                0.109 seconds (Sampling)#> Chain 1:                0.226 seconds (Total)#> Chain 1:#> Bayesian Inference performed with Stan.#>  MCMC sampling setup (select with '$setupMCMC')#>  Iterations: 3000#>  Warmup iterations: 1500#>  Thinning interval: 1#>  Number of chains: 1#>#> Maximum Rhat computed (na.rm = TRUE): 1.003735#>  Minimum Bulk_ESS: 434#>  Minimum Tail_ESS: 384#>  Bulk_ESS and Tail_ESS are crude measures of effecting sampling size for#>       bulk and tail quantities respectively. An ESS > 100 per chain can be#>       considered as a good indicator. Rhat is an indicator of chains convergence.#>       A Rhat <= 1.05 is a good indicator of convergence. For detail results,#>       one can call 'rstan::monitor(beeSurvValidation$hbfit)#>#> Results for hb:#>  parameters      median         Q2.5       Q97.5#>          hb 0.002590227 0.0006998442 0.006610267#> Note that computing can be quite long (several minutes).#>   Tips: To reduce that time you can reduce Number of MCMC chains (default mcmc_size is set to 1000).plot(validation)# plot the validation results

dataPredict<-data.frame(time= c(1:5,1:15),conc= c(rep(5,5), rep(15,15)),replicate= c(rep("rep1",5), rep("rep3",15)))# Prepare data for forwards predictionprediction<- predict(fit,dataPredict)# Perform forwards prediction. At the moment, no concentration recalculation is performed in the forwards prediction. The concentrations are taken as in a chronic testplot(prediction)# Plot of the prediction results

About

A General Unified Threshold model of Survival (GUTS) for Bees

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors4

  •  
  •  
  •  
  •  

[8]ページ先頭

©2009-2025 Movatter.jp