Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up

📈 poissonpy is a Python Poisson Equation library for scientific computing, image and video processing, and computer graphics.

License

NotificationsYou must be signed in to change notification settings

bchao1/poissonpy

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

38 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Plug-and-play standalone library for solving 2D Poisson equations. Useful tool in scientific computing prototyping, image and video processing, computer graphics.

Features

  • Solves the Poisson equation on sqaure or non-square rectangular grids.
  • Solves the Poisson equation on regions with arbitrary shape.
  • Supports arbitrary boundary and interior conditions usingsympy function experssions ornumpy arrays.
  • Supports Dirichlet, Neumann, or mixed boundary conditions.

Disclaimer

This package is only used to solve 2D Poisson equations. If you are looking for a general purpose and optimized PDE library, you might want to checkout theFEniCSx project.

Usage

Import necessary libraries.poissonpy utilizesnumpy andsympy greatly, so its best to import both:

importnumpyasnpfromsympyimportsin,cosfromsympy.abcimportx,yfrompoissonpyimportfunctional,utils,sovlers

Definingsympy functions

In the following examples, we use a ground truth function to create a mock Poisson equation and compare the solver's solution with the analytical solution.

Define functions usingsympy function expressions ornumpy arrays:

f_expr=sin(x)+cos(y)# create sympy function expressionlaplacian_expr=functional.get_sp_laplacian_expr(f_expr)# create sympy laplacian function expressionf=functional.get_sp_function(f_expr)# create sympy functionlaplacian=functional.get_sp_function(laplacian_expr)# create sympy function

Dirichlet Boundary Conditions

Define interior and Dirichlet boundary conditions:

interior=laplacianboundary= {"left": (f,"dirichlet"),"right": (f,"dirichlet"),"top": (f,"dirichlet"),"bottom": (f,"dirichlet")}

Initialize solver and solve Poisson equation:

solver=Poisson2DRectangle(((-2*np.pi,-2*np.pi), (2*np.pi,2*np.pi)),interior,boundary,X=100,Y=100)solution=solver.solve()

Plot solution and ground truth:

poissonpy.plot_3d(solver.x_grid,solver.y_grid,solution)poissonpy.plot_3d(solver.x_grid,solver.y_grid,f(solver.x_grid,solver.y_grid))
SolutionGround truthError

Neumann Boundary Conditions

You can also define Neumann boundary conditions by specifyingneumann_x andneumann_y in the boundary condition parameter.

x_derivative_expr=functional.get_sp_derivative_expr(f_expr,x)y_derivative_expr=functional.get_sp_derivative_expr(f_expr,y)interior=laplacianboundary= {"left": (f,"dirichlet"),"right": (functional.get_sp_function(x_derivative_expr),"neumann_x"),"top": (f,"dirichlet"),"bottom": (functional.get_sp_function(y_derivative_expr),"neumann_y")}
SolutionGround truthError

Zero-mean solution

If the boundary condition is purely Neumann, then the solution is not unique. Naively solving the Poisson equation gives bad results. In this case, you can set thezero_mean paramter toTrue, such that the solver finds a zero-mean solution.

solver=solvers.Poisson2DRectangle(    ((-2*np.pi,-2*np.pi), (2*np.pi,2*np.pi)),interior,boundary,X=100,Y=100,zero_mean=True)
zero_mean=Falsezero_mean=TrueGround truth

Laplace Equation

It's also straightforward to define a Laplace equation -we simply set the interior laplacian value to 0. In the following example, we set the boundary values to be spatially-varying periodic functions.

interior=0# laplace equation formleft=poissonpy.get_2d_sympy_function(sin(y))right=poissonpy.get_2d_sympy_function(sin(y))top=poissonpy.get_2d_sympy_function(sin(x))bottom=poissonpy.get_2d_sympy_function(sin(x))boundary= {"left": (left,"dirichlet"),"right": (right,"dirichlet"),"top": (top,"dirichlet"),"bottom": (bottom,"dirichlet")}

Solve the Laplace equation:

solver=Poisson2DRectangle(    ((-2*np.pi,-2*np.pi), (2*np.pi,2*np.pi)),interior,boundary,100,100)solution=solver.solve()poissonpy.plot_3d(solver.x_grid,solver.y_grid,solution,"solution")poissonpy.plot_2d(solution,"solution")
3D surface plot2D heatmap

Arbitrary-shaped domain

Use thePoisson2DRegion class to solve the Poisson eqaution on a arbitrary-shaped function domain.poissonpy can be seamlessly integrated in gradient-domain image processing algorithms.

The following is an example wherepoissonpy is used to implement the image cloning algorithm proposed inPoisson Image Editing by Perez et al., 2003. Seeexamples/poisson_image_editing.py for more details.

# compute laplacian of interpolation functionGx_src,Gy_src=functional.get_np_gradient(source)Gx_target,Gy_target=functional.get_np_gradient(target)G_src_mag= (Gx_src**2+Gy_src**2)**0.5G_target_mag= (Gx_target**2+Gy_target**2)**0.5Gx=np.where(G_src_mag>G_target_mag,Gx_src,Gx_target)Gy=np.where(G_src_mag>G_target_mag,Gy_src,Gy_target)Gxx,_=functional.get_np_gradient(Gx,forward=False)_,Gyy=functional.get_np_gradient(Gy,forward=False)laplacian=Gxx+Gyy# solve interpolation functionsolver=solvers.Poisson2DRegion(mask,laplacian,target)solution=solver.solve()# alpha-blend interpolation and target functionblended=mask*solution+ (1-mask)*target

Another example of usingpoissonpy to implement flash artifacts and reflection removal, using the algorithm proposed inRemoving Photography Artifacts using Gradient Projection and Flash-Exposure Sampling by Agrawal et al. 2005. Seeexamples/flash_noflash.py for more details.

Gx_a,Gy_a=functional.get_np_gradient(ambient)Gx_f,Gy_f=functional.get_np_gradient(flash)# gradient projectiont= (Gx_a*Gx_f+Gy_a*Gy_f)/ (Gx_a**2+Gy_a**2+1e-8)Gx_f_proj=t*Gx_aGy_f_proj=t*Gy_a# compute laplacian (div of gradient)lap=functional.get_np_div(Gx_f_proj,Gy_f_proj)# integrate laplacian fieldsolver=solvers.Poisson2DRegion(mask,lap,flash)res=solver.solve()

About

📈 poissonpy is a Python Poisson Equation library for scientific computing, image and video processing, and computer graphics.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages


[8]ページ先頭

©2009-2025 Movatter.jp