- Notifications
You must be signed in to change notification settings - Fork139
awslabs/python-deequ
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
PyDeequ is a Python API forDeequ, a library built on top of Apache Spark for defining "unit tests for data", which measure data quality in large datasets. PyDeequ is written to support usage of Deequ in Python.
There are 4 main components of Deequ, and they are:
- Metrics Computation:
Profiles
leverages Analyzers to analyze each column of a dataset.Analyzers
serve here as a foundational module that computes metrics for data profiling and validation at scale.
- Constraint Suggestion:
- Specify rules for various groups of Analyzers to be run over a dataset to return back a collection of constraints suggested to run in a Verification Suite.
- Constraint Verification:
- Perform data validation on a dataset with respect to various constraints set by you.
- Metrics Repository
- Allows for persistence and tracking of Deequ runs over time.
- NEW!!! The 1.4.0 release of Python Deequ has been published to PYPIhttps://pypi.org/project/pydeequ/. This release adds support for Spark 3.5.0.
- The latest version of Deequ, 2.0.7, is made available With Python Deequ 1.3.0.
- 1.1.0 release of Python Deequ has been published to PYPIhttps://pypi.org/project/pydeequ/. This release brings many recent upgrades including support up to Spark 3.3.0! Any feedbacks are welcome through github issues.
- With PyDeequ v0.1.8+, we now officially support Spark3 ! Just make sure you have an environment variable
SPARK_VERSION
to specify your Spark version! - We've release a blogpost on integrating PyDeequ onto AWS leveraging services such as AWS Glue, Athena, and SageMaker! Check it out:Monitor data quality in your data lake using PyDeequ and AWS Glue.
- Check out thePyDeequ Release Announcement Blogpost with a tutorial walkthrough the Amazon Reviews dataset!
- Join the PyDeequ community onPyDeequ Slack to chat with the devs!
The following will quickstart you with some basic usage. For more in-depth examples, take a look in thetutorials/
directory for executable Jupyter notebooks of each module. For documentation on supported interfaces, view thedocumentation
.
You can installPyDeequ via pip.
pip install pydeequ
frompyspark.sqlimportSparkSession,Rowimportpydeequspark= (SparkSession .builder .config("spark.jars.packages",pydeequ.deequ_maven_coord) .config("spark.jars.excludes",pydeequ.f2j_maven_coord) .getOrCreate())df=spark.sparkContext.parallelize([Row(a="foo",b=1,c=5),Row(a="bar",b=2,c=6),Row(a="baz",b=3,c=None)]).toDF()
frompydeequ.analyzersimport*analysisResult=AnalysisRunner(spark) \ .onData(df) \ .addAnalyzer(Size()) \ .addAnalyzer(Completeness("b")) \ .run()analysisResult_df=AnalyzerContext.successMetricsAsDataFrame(spark,analysisResult)analysisResult_df.show()
frompydeequ.profilesimport*result=ColumnProfilerRunner(spark) \ .onData(df) \ .run()forcol,profileinresult.profiles.items():print(profile)
frompydeequ.suggestionsimport*suggestionResult=ConstraintSuggestionRunner(spark) \ .onData(df) \ .addConstraintRule(DEFAULT()) \ .run()# Constraint Suggestions in JSON formatprint(suggestionResult)
frompydeequ.checksimport*frompydeequ.verificationimport*check=Check(spark,CheckLevel.Warning,"Review Check")checkResult=VerificationSuite(spark) \ .onData(df) \ .addCheck(check.hasSize(lambdax:x>=3) \ .hasMin("b",lambdax:x==0) \ .isComplete("c") \ .isUnique("a") \ .isContainedIn("a", ["foo","bar","baz"]) \ .isNonNegative("b")) \ .run()checkResult_df=VerificationResult.checkResultsAsDataFrame(spark,checkResult)checkResult_df.show()
Save to a Metrics Repository by adding theuseRepository()
andsaveOrAppendResult()
calls to your Analysis Runner.
frompydeequ.repositoryimport*frompydeequ.analyzersimport*metrics_file=FileSystemMetricsRepository.helper_metrics_file(spark,'metrics.json')repository=FileSystemMetricsRepository(spark,metrics_file)key_tags= {'tag':'pydeequ hello world'}resultKey=ResultKey(spark,ResultKey.current_milli_time(),key_tags)analysisResult=AnalysisRunner(spark) \ .onData(df) \ .addAnalyzer(ApproxCountDistinct('b')) \ .useRepository(repository) \ .saveOrAppendResult(resultKey) \ .run()
To load previous runs, use therepository
object to load previous results back in.
result_metrep_df=repository.load() \ .before(ResultKey.current_milli_time()) \ .forAnalyzers([ApproxCountDistinct('b')]) \ .getSuccessMetricsAsDataFrame()
After you've ran your jobs with PyDeequ, be sure to shut down your Spark session to prevent any hanging processes.
spark.sparkContext._gateway.shutdown_callback_server()spark.stop()
Please refer to thecontributing doc for how to contribute to PyDeequ.
This library is licensed under the Apache 2.0 License.
- SetupSDKMAN
- SetupJava
- SetupApache Spark
- InstallPoetry
- Runtests locally
SDKMAN is a tool for managing parallel Versions of multiple Software Development Kits on any Unix basedsystem. It provides a convenient command line interface for installing, switching, removing and listingCandidates. SDKMAN! installs smoothly on Mac OSX, Linux, WSL, Cygwin, etc... Support Bash and ZSH shells. Seedocumentation on theSDKMAN! website.
Open your favourite terminal and enter the following:
$ curl -s https://get.sdkman.io| bashIf the environment needs tweakingfor SDKMAN to be installed,the installer will prompt you accordingly and ask you to restart.Next, open a new terminal or enter:$source"$HOME/.sdkman/bin/sdkman-init.sh"Lastly, run the following code snippet to ensure that installation succeeded:$ sdk version
Install Java Now open favourite terminal and enter the following:
List the AdoptOpenJDK OpenJDK versions$ sdk list javaTo install For Java 11$ sdk install java 11.0.10.hs-adptTo install For Java 11$ sdk install java 8.0.292.hs-adpt
Install Java Now open favourite terminal and enter the following:
List the Apache Spark versions:$ sdk list sparkTo install For Spark 3$ sdk install spark 3.0.2
PoetryCommands
poetry installpoetry update# --tree: List the dependencies as a tree.# --latest (-l): Show the latest version.# --outdated (-o): Show the latest version but only for packages that are outdated.poetry show -o
Take a look at tests intests/dataquality
andtests/jobs
$ poetry run pytest
If you have issues installing the dependencies listed above, another way to run the tests and verify your changes is through Docker. There is a Dockerfile that will install the required dependencies and run the tests in a container.
docker build . -t spark-3.3-docker-testdocker run spark-3.3-docker-test
About
Python API for Deequ