- Notifications
You must be signed in to change notification settings - Fork7
All types of basic graph is explained with Example
License
NotificationsYou must be signed in to change notification settings
ashishpatel26/Plotly-Example-for-Visualization
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Repository files navigation
# !pip install cufflinksimportpandasaspdimportnumpyasnpimportcufflinksascfimportplotly.plotlyaspyimportplotly.toolsastlsimportplotly.graph_objsasgoimportsklearnfromsklearn.preprocessingimportStandardScaler
tls.set_credentials_file(username="ashishpatel.ce",api_key='oLnw8eVRtPb9SPFkzNCJ')
a=np.linspace(start=0,stop=36,num=36)np.random.seed(25)b=np.random.uniform(low=0.0,high=1.0,size=36)trace=go.Scatter(x=a,y=b)data= [trace]py.iplot(data,filename='basic-file')
High five! You successfully sent some data to your account on plotly. View your plot in your browser at https://plot.ly/~ashishpatel.ce/0 or inside your plot.ly account where it is named 'basic-file'x= [1,2,3,4,5,6,7,8,9]y= [1,2,3,4,0.5,4,3,2,1]z= [10,9,8,7,6,5,4,3,2,1]trace0=go.Scatter(x=x,y=y,name='List Object',line=dict(width=5))trace1=go.Scatter(x=x,y=z,name='List Object 2',line=dict(width=5))data= [trace0,trace1]layout=dict(title="Double Line Chart",xaxis=dict(title="X-Axis"),yaxis=dict(title="Y-Axis"))fig=dict(data=data,layout=layout)print(fig)
{'layout': {'yaxis': {'title': 'Y-Axis'}, 'xaxis': {'title': 'X-Axis'}, 'title': 'Double Line Chart'}, 'data': [{'y': [1, 2, 3, 4, 0.5, 4, 3, 2, 1], 'type': 'scatter', 'x': [1, 2, 3, 4, 5, 6, 7, 8, 9], 'line': {'width': 5}, 'name': 'List Object'}, {'y': [10, 9, 8, 7, 6, 5, 4, 3, 2, 1], 'type': 'scatter', 'x': [1, 2, 3, 4, 5, 6, 7, 8, 9], 'line': {'width': 5}, 'name': 'List Object 2'}]}py.iplot(fig,filename="basic-line-chart")
car=pd.read_csv("https://gist.githubusercontent.com/seankross/a412dfbd88b3db70b74b/raw/5f23f993cd87c283ce766e7ac6b329ee7cc2e1d1/mtcars.csv")df=car[['cyl','wt','mpg']]layout=dict(title="Chart from pandas dataframe",xaxis=dict(title="X-Axis"),yaxis=dict(title="Y-Axis"))df.iplot(filename="Simple-line-chart",layout=layout)
data= [go.Bar(x=x,y=y)]layout=dict(title="Bar Chart from pandas dataframe",xaxis=dict(title="X-Axis"),yaxis=dict(title="Y-Axis"))py.iplot(data,filename="basic-barchart",layout=layout)
color_theme=dict(color= ['rgba(169,169,169,1)','rgba(255,160,122,1)','rgba(176,224,230,1)','rgba(189,183,107,1)','rgba(188,143,143,1)','rgba(221,160,221,1)','rgba(169,169,169,1)','rgba(255,160,122,1)','rgba(176,224,230,1)'])
trace0=go.Bar(x=x,y=y,marker=color_theme)data= [trace0]layout=go.Layout(title="Custom Color")fig=go.Figure(data=data,layout=layout)py.iplot(fig,filename="file-name")
fig= {'data' : [{'labels':['bicycle','motorbike','car','van','stroller'],'values':[1,2,3,4,0.5],'type' :'pie'}],'layout':{'title':'Simple Pie Chart'}}py.iplot(fig,filename='pie chart')
car=pd.read_csv("https://gist.githubusercontent.com/seankross/a412dfbd88b3db70b74b/raw/5f23f993cd87c283ce766e7ac6b329ee7cc2e1d1/mtcars.csv")mpg=car.mpgmpg.iplot(kind="histogram",filename="Simple Histogram")
cars_data=car.ix[:,(1,3,4)].valuescar_data_std=StandardScaler().fit_transform(cars_data)car_select=pd.DataFrame(car_data_std)car_select.columns= ['mpg','disp','hp']car_select.iplot(kind="histogram",filename="Simple car Plot")
car_select.iplot(kind="histogram",filename="Simple car Plot",subplots=True)
car_select.iplot(kind="histogram",filename="Simple car Plot",subplots=True,shape=(3,1))
car_select.iplot(kind="box",filename="Boxplot")
fig= {'data': [{'x':car_select.mpg,'y':car_select.disp,'mode':'markers','name':'mpg'}, {'x':car_select.hp,'y':car_select.disp,'mode':'markers','name':'hp'}],'layout':{'xaxis':{'title':''},'yaxis' : {'title':'Stardardized Displacement'}}}py.iplot(fig,filename="Group Scatter Plot")
df=pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/2011_us_ag_exports.csv')forcolindf.columns:df[col]=df[col].astype(str)scl= [[0.0,'rgb(242,240,247)'],[0.2,'rgb(218,218,235)'],[0.4,'rgb(188,189,220)'],\ [0.6,'rgb(158,154,200)'],[0.8,'rgb(117,107,177)'],[1.0,'rgb(84,39,143)']]df['text']=df['state']+'<br>'+\'Beef '+df['beef']+' Dairy '+df['dairy']+'<br>'+\'Fruits '+df['total fruits']+' Veggies '+df['total veggies']+'<br>'+\'Wheat '+df['wheat']+' Corn '+df['corn']data= [dict(type='choropleth',colorscale=scl,autocolorscale=False,locations=df['code'],z=df['total exports'].astype(float),locationmode='USA-states',text=df['text'],marker=dict(line=dict (color='rgb(255,255,255)',width=2 ) ),colorbar=dict(title="Millions USD") ) ]layout=dict(title='2011 US Agriculture Exports by State<br>(Hover for breakdown)',geo=dict(scope='usa',projection=dict(type='albers usa' ),showlakes=True,lakecolor='rgb(255, 255, 255)'), )fig=dict(data=data,layout=layout )py.iplot(fig,filename='d3-cloropleth-map' )
importplotly.plotlyaspyimportpandasaspddf=pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/2014_world_gdp_with_codes.csv')data= [dict(type='choropleth',locations=df['CODE'],z=df['GDP (BILLIONS)'],text=df['COUNTRY'],colorscale= [[0,"rgb(5, 10, 172)"],[0.35,"rgb(40, 60, 190)"],[0.5,"rgb(70, 100, 245)"],\ [0.6,"rgb(90, 120, 245)"],[0.7,"rgb(106, 137, 247)"],[1,"rgb(220, 220, 220)"]],autocolorscale=False,reversescale=True,marker=dict(line=dict (color='rgb(180,180,180)',width=0.5 ) ),colorbar=dict(autotick=False,tickprefix='$',title='GDP<br>Billions US$'), ) ]layout=dict(title='2014 Global GDP<br>Source:\ <a href="https://www.cia.gov/library/publications/the-world-factbook/fields/2195.html">\ CIA World Factbook</a>',geo=dict(showframe=False,showcoastlines=False,projection=dict(type='Mercator' ) ))fig=dict(data=data,layout=layout )py.iplot(fig,validate=False,filename='d3-world-map' )
importplotly.plotlyaspyimportplotly.graph_objsasgoimportpandasaspddf=pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/2014_ebola.csv')df.head()cases= []colors= ['rgb(239,243,255)','rgb(189,215,231)','rgb(107,174,214)','rgb(33,113,181)']months= {6:'June',7:'July',8:'Aug',9:'Sept'}foriinrange(6,10)[::-1]:cases.append(go.Scattergeo(lon=df[df['Month']==i ]['Lon'],#-(max(range(6,10))-i),lat=df[df['Month']==i ]['Lat'],text=df[df['Month']==i ]['Value'],name=months[i],marker=dict(size=df[df['Month']==i ]['Value']/50,color=colors[i-6],line=dict(width=0) ), ) )cases[0]['text']=df[df['Month']==9 ]['Value'].map('{:.0f}'.format).astype(str)+' '+\df[df['Month']==9 ]['Country']cases[0]['mode']='markers+text'cases[0]['textposition']='bottom center'inset= [go.Choropleth(locationmode='country names',locations=df[df['Month']==9 ]['Country'],z=df[df['Month']==9 ]['Value'],text=df[df['Month']==9 ]['Country'],colorscale= [[0,'rgb(0, 0, 0)'],[1,'rgb(0, 0, 0)']],autocolorscale=False,showscale=False,geo='geo2' ),go.Scattergeo(lon= [21.0936],lat= [7.1881],text= ['Africa'],mode='text',showlegend=False,geo='geo2' )]layout=go.Layout(title='Ebola cases reported by month in West Africa 2014<br>\Source: <a href="https://data.hdx.rwlabs.org/dataset/rowca-ebola-cases">\HDX</a>',geo=dict(resolution=50,scope='africa',showframe=False,showcoastlines=True,showland=True,landcolor="rgb(229, 229, 229)",countrycolor="rgb(255, 255, 255)" ,coastlinecolor="rgb(255, 255, 255)",projection=dict(type='Mercator' ),lonaxis=dict(range= [-15.0,-5.0 ] ),lataxis=dict(range= [0.0,12.0 ] ),domain=dict(x= [0,1 ],y= [0,1 ] ) ),geo2=dict(scope='africa',showframe=False,showland=True,landcolor="rgb(229, 229, 229)",showcountries=False,domain=dict(x= [0,0.6 ],y= [0,0.6 ] ),bgcolor='rgba(255, 255, 255, 0.0)', ),legend=dict(traceorder='reversed' ))fig=go.Figure(layout=layout,data=cases+inset)py.iplot(fig,validate=False,filename='West Africa Ebola cases 2014')
About
All types of basic graph is explained with Example
Topics
Resources
License
Uh oh!
There was an error while loading.Please reload this page.
Stars
Watchers
Forks
Releases
No releases published
Packages0
No packages published