Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

All types of basic graph is explained with Example

License

NotificationsYou must be signed in to change notification settings

ashishpatel26/Plotly-Example-for-Visualization

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 

Repository files navigation

# !pip install cufflinksimportpandasaspdimportnumpyasnpimportcufflinksascfimportplotly.plotlyaspyimportplotly.toolsastlsimportplotly.graph_objsasgoimportsklearnfromsklearn.preprocessingimportStandardScaler
tls.set_credentials_file(username="ashishpatel.ce",api_key='oLnw8eVRtPb9SPFkzNCJ')
a=np.linspace(start=0,stop=36,num=36)np.random.seed(25)b=np.random.uniform(low=0.0,high=1.0,size=36)trace=go.Scatter(x=a,y=b)data= [trace]py.iplot(data,filename='basic-file')
High five! You successfully sent some data to your account on plotly. View your plot in your browser at https://plot.ly/~ashishpatel.ce/0 or inside your plot.ly account where it is named 'basic-file'
<iframe scrolling="no" seamless="seamless" src="https://plot.ly/~ashishpatel.ce/0.embed" height="525px" width="100%"></iframe>

Small Line chart

x= [1,2,3,4,5,6,7,8,9]y= [1,2,3,4,0.5,4,3,2,1]z= [10,9,8,7,6,5,4,3,2,1]trace0=go.Scatter(x=x,y=y,name='List Object',line=dict(width=5))trace1=go.Scatter(x=x,y=z,name='List Object 2',line=dict(width=5))data= [trace0,trace1]layout=dict(title="Double Line Chart",xaxis=dict(title="X-Axis"),yaxis=dict(title="Y-Axis"))fig=dict(data=data,layout=layout)print(fig)
{'layout': {'yaxis': {'title': 'Y-Axis'}, 'xaxis': {'title': 'X-Axis'}, 'title': 'Double Line Chart'}, 'data': [{'y': [1, 2, 3, 4, 0.5, 4, 3, 2, 1], 'type': 'scatter', 'x': [1, 2, 3, 4, 5, 6, 7, 8, 9], 'line': {'width': 5}, 'name': 'List Object'}, {'y': [10, 9, 8, 7, 6, 5, 4, 3, 2, 1], 'type': 'scatter', 'x': [1, 2, 3, 4, 5, 6, 7, 8, 9], 'line': {'width': 5}, 'name': 'List Object 2'}]}
py.iplot(fig,filename="basic-line-chart")
<iframe scrolling="no" seamless="seamless" src="https://plot.ly/~ashishpatel.ce/2.embed" height="525px" width="100%"></iframe>
car=pd.read_csv("https://gist.githubusercontent.com/seankross/a412dfbd88b3db70b74b/raw/5f23f993cd87c283ce766e7ac6b329ee7cc2e1d1/mtcars.csv")df=car[['cyl','wt','mpg']]layout=dict(title="Chart from pandas dataframe",xaxis=dict(title="X-Axis"),yaxis=dict(title="Y-Axis"))df.iplot(filename="Simple-line-chart",layout=layout)
<iframe scrolling="no" seamless="seamless" src="https://plot.ly/~ashishpatel.ce/4.embed" height="525px" width="100%"></iframe>

Creating Bar Chart

data= [go.Bar(x=x,y=y)]layout=dict(title="Bar Chart from pandas dataframe",xaxis=dict(title="X-Axis"),yaxis=dict(title="Y-Axis"))py.iplot(data,filename="basic-barchart",layout=layout)
<iframe scrolling="no" seamless="seamless" src="https://plot.ly/~ashishpatel.ce/6.embed" height="525px" width="100%"></iframe>
color_theme=dict(color= ['rgba(169,169,169,1)','rgba(255,160,122,1)','rgba(176,224,230,1)','rgba(189,183,107,1)','rgba(188,143,143,1)','rgba(221,160,221,1)','rgba(169,169,169,1)','rgba(255,160,122,1)','rgba(176,224,230,1)'])
trace0=go.Bar(x=x,y=y,marker=color_theme)data= [trace0]layout=go.Layout(title="Custom Color")fig=go.Figure(data=data,layout=layout)py.iplot(fig,filename="file-name")
<iframe scrolling="no" seamless="seamless" src="https://plot.ly/~ashishpatel.ce/8.embed" height="525px" width="100%"></iframe>

Create Pie Chart

fig= {'data' : [{'labels':['bicycle','motorbike','car','van','stroller'],'values':[1,2,3,4,0.5],'type' :'pie'}],'layout':{'title':'Simple Pie Chart'}}py.iplot(fig,filename='pie chart')
<iframe scrolling="no" seamless="seamless" src="https://plot.ly/~ashishpatel.ce/10.embed" height="525px" width="100%"></iframe>

StatisticsPlot

car=pd.read_csv("https://gist.githubusercontent.com/seankross/a412dfbd88b3db70b74b/raw/5f23f993cd87c283ce766e7ac6b329ee7cc2e1d1/mtcars.csv")mpg=car.mpgmpg.iplot(kind="histogram",filename="Simple Histogram")
<iframe scrolling="no" seamless="seamless" src="https://plot.ly/~ashishpatel.ce/14.embed" height="525px" width="100%"></iframe>
cars_data=car.ix[:,(1,3,4)].valuescar_data_std=StandardScaler().fit_transform(cars_data)car_select=pd.DataFrame(car_data_std)car_select.columns= ['mpg','disp','hp']car_select.iplot(kind="histogram",filename="Simple car Plot")
<iframe scrolling="no" seamless="seamless" src="https://plot.ly/~ashishpatel.ce/16.embed" height="525px" width="100%"></iframe>
car_select.iplot(kind="histogram",filename="Simple car Plot",subplots=True)
<iframe scrolling="no" seamless="seamless" src="https://plot.ly/~ashishpatel.ce/16.embed" height="525px" width="100%"></iframe>
car_select.iplot(kind="histogram",filename="Simple car Plot",subplots=True,shape=(3,1))
<iframe scrolling="no" seamless="seamless" src="https://plot.ly/~ashishpatel.ce/16.embed" height="525px" width="100%"></iframe>

Box Plot

car_select.iplot(kind="box",filename="Boxplot")
<iframe scrolling="no" seamless="seamless" src="https://plot.ly/~ashishpatel.ce/18.embed" height="525px" width="100%"></iframe>

Scatter plot

fig= {'data': [{'x':car_select.mpg,'y':car_select.disp,'mode':'markers','name':'mpg'},                {'x':car_select.hp,'y':car_select.disp,'mode':'markers','name':'hp'}],'layout':{'xaxis':{'title':''},'yaxis' : {'title':'Stardardized Displacement'}}}py.iplot(fig,filename="Group Scatter Plot")
<iframe scrolling="no" seamless="seamless" src="https://plot.ly/~ashishpatel.ce/22.embed" height="525px" width="100%"></iframe>

Map Plot

1.Cloropleth Map

2.Point Map

1.Cloropleth Map

df=pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/2011_us_ag_exports.csv')forcolindf.columns:df[col]=df[col].astype(str)scl= [[0.0,'rgb(242,240,247)'],[0.2,'rgb(218,218,235)'],[0.4,'rgb(188,189,220)'],\            [0.6,'rgb(158,154,200)'],[0.8,'rgb(117,107,177)'],[1.0,'rgb(84,39,143)']]df['text']=df['state']+'<br>'+\'Beef '+df['beef']+' Dairy '+df['dairy']+'<br>'+\'Fruits '+df['total fruits']+' Veggies '+df['total veggies']+'<br>'+\'Wheat '+df['wheat']+' Corn '+df['corn']data= [dict(type='choropleth',colorscale=scl,autocolorscale=False,locations=df['code'],z=df['total exports'].astype(float),locationmode='USA-states',text=df['text'],marker=dict(line=dict (color='rgb(255,255,255)',width=2            ) ),colorbar=dict(title="Millions USD")        ) ]layout=dict(title='2011 US Agriculture Exports by State<br>(Hover for breakdown)',geo=dict(scope='usa',projection=dict(type='albers usa' ),showlakes=True,lakecolor='rgb(255, 255, 255)'),             )fig=dict(data=data,layout=layout )py.iplot(fig,filename='d3-cloropleth-map' )
<iframe scrolling="no" seamless="seamless" src="https://plot.ly/~ashishpatel.ce/26.embed" height="525px" width="100%"></iframe>

World Map

importplotly.plotlyaspyimportpandasaspddf=pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/2014_world_gdp_with_codes.csv')data= [dict(type='choropleth',locations=df['CODE'],z=df['GDP (BILLIONS)'],text=df['COUNTRY'],colorscale= [[0,"rgb(5, 10, 172)"],[0.35,"rgb(40, 60, 190)"],[0.5,"rgb(70, 100, 245)"],\            [0.6,"rgb(90, 120, 245)"],[0.7,"rgb(106, 137, 247)"],[1,"rgb(220, 220, 220)"]],autocolorscale=False,reversescale=True,marker=dict(line=dict (color='rgb(180,180,180)',width=0.5            ) ),colorbar=dict(autotick=False,tickprefix='$',title='GDP<br>Billions US$'),      ) ]layout=dict(title='2014 Global GDP<br>Source:\            <a href="https://www.cia.gov/library/publications/the-world-factbook/fields/2195.html">\            CIA World Factbook</a>',geo=dict(showframe=False,showcoastlines=False,projection=dict(type='Mercator'        )    ))fig=dict(data=data,layout=layout )py.iplot(fig,validate=False,filename='d3-world-map' )
<iframe scrolling="no" seamless="seamless" src="https://plot.ly/~ashishpatel.ce/28.embed" height="525px" width="100%"></iframe>

Charoplath Map

importplotly.plotlyaspyimportplotly.graph_objsasgoimportpandasaspddf=pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/2014_ebola.csv')df.head()cases= []colors= ['rgb(239,243,255)','rgb(189,215,231)','rgb(107,174,214)','rgb(33,113,181)']months= {6:'June',7:'July',8:'Aug',9:'Sept'}foriinrange(6,10)[::-1]:cases.append(go.Scattergeo(lon=df[df['Month']==i ]['Lon'],#-(max(range(6,10))-i),lat=df[df['Month']==i ]['Lat'],text=df[df['Month']==i ]['Value'],name=months[i],marker=dict(size=df[df['Month']==i ]['Value']/50,color=colors[i-6],line=dict(width=0)        ),    ) )cases[0]['text']=df[df['Month']==9 ]['Value'].map('{:.0f}'.format).astype(str)+' '+\df[df['Month']==9 ]['Country']cases[0]['mode']='markers+text'cases[0]['textposition']='bottom center'inset= [go.Choropleth(locationmode='country names',locations=df[df['Month']==9 ]['Country'],z=df[df['Month']==9 ]['Value'],text=df[df['Month']==9 ]['Country'],colorscale= [[0,'rgb(0, 0, 0)'],[1,'rgb(0, 0, 0)']],autocolorscale=False,showscale=False,geo='geo2'    ),go.Scattergeo(lon= [21.0936],lat= [7.1881],text= ['Africa'],mode='text',showlegend=False,geo='geo2'    )]layout=go.Layout(title='Ebola cases reported by month in West Africa 2014<br>\Source: <a href="https://data.hdx.rwlabs.org/dataset/rowca-ebola-cases">\HDX</a>',geo=dict(resolution=50,scope='africa',showframe=False,showcoastlines=True,showland=True,landcolor="rgb(229, 229, 229)",countrycolor="rgb(255, 255, 255)" ,coastlinecolor="rgb(255, 255, 255)",projection=dict(type='Mercator'        ),lonaxis=dict(range= [-15.0,-5.0 ] ),lataxis=dict(range= [0.0,12.0 ] ),domain=dict(x= [0,1 ],y= [0,1 ]        )    ),geo2=dict(scope='africa',showframe=False,showland=True,landcolor="rgb(229, 229, 229)",showcountries=False,domain=dict(x= [0,0.6 ],y= [0,0.6 ]        ),bgcolor='rgba(255, 255, 255, 0.0)',    ),legend=dict(traceorder='reversed'    ))fig=go.Figure(layout=layout,data=cases+inset)py.iplot(fig,validate=False,filename='West Africa Ebola cases 2014')
<iframe scrolling="no" seamless="seamless" src="https://plot.ly/~ashishpatel.ce/30.embed" height="525px" width="100%"></iframe>

About

All types of basic graph is explained with Example

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

[8]ページ先頭

©2009-2025 Movatter.jp