Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Load Overture Maps Datasets as 'dbplyr' and 'sf'-Ready Data Frames

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md
NotificationsYou must be signed in to change notification settings

arthurgailes/overtureR

Lifecycle: experimentalCRAN statusR-CMD-checkCodecov test coverage

Installation

install.packages("overtureR")# devtools::install_github("arthurgailes/overtureR")

Key Features

  • Query globalOverture Maps data directlyin R
  • Conduct analysis on massive dataset without loading into memory usingdbplyr’s lazy evaluation
  • Seamlessdplyr andsf integration
  • Merge with your localsf data withinduckdb or withsf
  • Local downloading for offline use and perforamnce

Usage

Replicatingduckdb examples fromm theOverturedocs

library(overtureR)library(dplyr)library(ggplot2)counties<- open_curtain("division_area")|># in R, filtering on variables must come before removing them via select  filter(subtype=="county"&country=="US"&region=="US-PA")|>  transmute(id,division_id,primary=names$primary,geometry  )|>  collect()# Plot the resultsggplot(counties)+  geom_sf(aes(fill= as.numeric(sf::st_area(geometry))),color="white",size=0.2)+viridis::scale_fill_viridis(option="plasma",guide=FALSE)+  labs(title="Pennsylvania Counties by Area",caption="Data: Overture Maps"  )

library(overtureR)library(dplyr)# lazily load the full `mountains` datasetmountains<- open_curtain(type="*",theme="places")|>  transmute(id,primary_name=names$primary,x=bbox$xmin,y=bbox$ymin,main_category=categories$primary,primary_source=sources[[1]]$dataset,confidence,geometry# currently no duckdb spatial implementation  )|>  filter(main_category=="mountain"&confidence>.90)head(mountains)#> # Source:   SQL [6 x 8]#> # Database: DuckDB v1.0.0 [Arthur.Gailes@Windows 10 x64:R 4.2.1/:memory:]#>   id            primary_name     x     y main_category primary_source confidence#>   <chr>         <chr>        <dbl> <dbl> <chr>         <chr>               <dbl>#> 1 08f464e0e312… Kawaikini    -159.  22.1 mountain      meta                0.954#> 2 08f464e3b1a2… Kalepa       -159.  22.0 mountain      meta                0.938#> 3 08f464e05984… Sleeping Gi… -159.  22.1 mountain      meta                0.945#> 4 08f464e3a4d0… Nounou-East… -159.  22.1 mountain      meta                0.945#> 5 08f464e05514… Makaleha Mo… -159.  22.1 mountain      meta                0.965#> 6 08f464e03538… Makana       -160.  22.2 mountain      meta                0.938#> # ℹ 1 more variable: geometry <POINT [°]>

Downloading data locally

The record_overture function allows you to download Overture Maps datato a local directory, maintaining the same partition structure as in S3.This is useful for offline analysis or when you need to work with thedata repeatedly. Here’s an example:

library(overtureR)library(ggplot2)library(dplyr)library(rayshader)# Define a bounding box for New York Citybroadway<- c(xmin=-73.9901,ymin=40.755488,xmax=-73.98,ymax=40.76206)# Download building data for NYC to a local directorylocal_buildings<- open_curtain("building",broadway)|>   record_overture(output_dir= tempdir(),overwrite=TRUE)# The downloaded data is returned as a `dbplyr` object, same as the original (but faster!)broadway_buildings<-local_buildings|>   filter(!is.na(height))|>   mutate(height= round(height))|>   collect()p<- ggplot(broadway_buildings)+  geom_sf(aes(fill=height))+  scale_fill_distiller(palette="Oranges",direction=1)+# guides(fill = FALSE) +  labs(title="Buildings on Broadway",caption="Data: Overture Maps",fill="")# Convert to 3D and renderplot_gg(p,multicore=TRUE,width=6,height=5,scale=250,windowsize= c(1032,860),zoom=0.55,phi=40,theta=0,solid=FALSE,offset_edges=TRUE,sunangle=75)render_snapshot(clear=TRUE)

Roadmap

  • Read pmtiles
  • Add partition, chunking to record_overture
  • Add beta/alpha datasets
  • Add mapping vignette
  • Add performance vignette

About

Load Overture Maps Datasets as 'dbplyr' and 'sf'-Ready Data Frames

Resources

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md

Code of conduct

Contributing

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages


[8]ページ先頭

©2009-2025 Movatter.jp