Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

pyclustering is a Python, C++ data mining library.

License

NotificationsYou must be signed in to change notification settings

annoviko/pyclustering

Repository files navigation

Warning - Attention Users

Please be aware that the `pyclustering` library is no longer supported as of 2021 due to personal reasons. There will be no further maintenance, issue addressing, or feature development for this repository.

For continued usage, I recommend seeking alternative solutions.

Thank you for your understanding.

Build Status

Build Status Linux MacOSBuild Status WinCoverage StatusPyPiDownload CounterJOSS

PyClustering

pyclustering is a Python, C++ data mining library (clusteringalgorithm, oscillatory networks, neural networks). The library providesPython and C++ implementations (C++ pyclustering library) of each algorithm ormodel. C++ pyclustering library is a part of pyclustering and supported forLinux, Windows and MacOS operating systems.

Version: 0.11.dev

License: The 3-Clause BSD License

E-Mail:pyclustering@yandex.ru

Documentation:https://pyclustering.github.io/docs/0.10.1/html/

Homepage:https://pyclustering.github.io/

PyClustering Wiki:https://github.com/annoviko/pyclustering/wiki

Dependencies

Required packages: scipy, matplotlib, numpy, Pillow

Python version: >=3.6 (32-bit, 64-bit)

C++ version: >= 14 (32-bit, 64-bit)

Performance

Each algorithm is implemented using Python and C/C++ language, if your platform is not supported then Pythonimplementation is used, otherwise C/C++. Implementation can be chosen by ccore flag (by default it is always'True' and it means that C/C++ is used), for example:

# As by default - C/C++ part of the library is usedxmeans_instance_1=xmeans(data_points,start_centers,20,ccore=True);# The same - C/C++ part of the library is used by defaultxmeans_instance_2=xmeans(data_points,start_centers,20);# Switch off core - Python is usedxmeans_instance_3=xmeans(data_points,start_centers,20,ccore=False);

Installation

Installation using pip3 tool:

$ pip3 install pyclustering

Manual installation from official repository using Makefile:

# get sources of the pyclustering library, for example, from repository$ mkdir pyclustering$cd pyclustering/$ git clone https://github.com/annoviko/pyclustering.git.# compile CCORE library (core of the pyclustering library).$cd ccore/$ make ccore_64bit# build for 64-bit OS# $ make ccore_32bit    # build for 32-bit OS# return to parent folder of the pyclustering library$cd ../# install pyclustering library$ python3 setup.py install# optionally - test the library$ python3 setup.pytest

Manual installation using CMake:

# get sources of the pyclustering library, for example, from repository$ mkdir pyclustering$cd pyclustering/$ git clone https://github.com/annoviko/pyclustering.git.# generate build files.$ mkdir build$ cmake ..# build pyclustering-shared target depending on what was generated (Makefile or MSVC solution)# if Makefile has been generated then$ make pyclustering-shared# return to parent folder of the pyclustering library$cd ../# install pyclustering library$ python3 setup.py install# optionally - test the library$ python3 setup.pytest

Manual installation using Microsoft Visual Studio solution:

  1. Clone repository from:https://github.com/annoviko/pyclustering.git
  2. Open folder pyclustering/ccore
  3. Open Visual Studio project ccore.sln
  4. Select solution platform: x86 or x64
  5. Build pyclustering-shared project.
  6. Add pyclustering folder to python path or install it using setup.py
# install pyclustering library$ python3 setup.py install# optionally - test the library$ python3 setup.pytest

Proposals, Questions, Bugs

In case of any questions, proposals or bugs related to the pyclustering please contact topyclustering@yandex.ru or create an issue here.

PyClustering Status

Branchmaster0.10.dev0.10.1.rel
Build (Linux, MacOS)Build Status Linux MacOSBuild Status Linux MacOS 0.10.devBuild Status Linux 0.10.1.rel
Build (Win)Build Status WinBuild Status Win 0.10.devBuild Status Win 0.10.1.rel
Code CoverageCoverage StatusCoverage Status 0.10.devCoverage Status 0.10.1.rel

Cite the Library

If you are using pyclustering library in a scientific paper, please, cite the library:

Novikov, A., 2019. PyClustering: Data Mining Library. Journal of Open Source Software, 4(36), p.1230. Available at:http://dx.doi.org/10.21105/joss.01230.

BibTeX entry:

@article{Novikov2019,    doi         = {10.21105/joss.01230},    url         = {https://doi.org/10.21105/joss.01230},    year        = 2019,    month       = {apr},    publisher   = {The Open Journal},    volume      = {4},    number      = {36},    pages       = {1230},    author      = {Andrei Novikov},    title       = {{PyClustering}: Data Mining Library},    journal     = {Journal of Open Source Software}}

Brief Overview of the Library Content

Clustering algorithms and methods (module pyclustering.cluster):

AlgorithmPythonC++
Agglomerative
BANG 
BIRCH 
BSAS
CLARANS 
CLIQUE
CURE
DBSCAN
Elbow
EMA 
Fuzzy C-Means
GA (Genetic Algorithm)
G-Means
HSyncNet
K-Means
K-Means++
K-Medians
K-Medoids
MBSAS
OPTICS
ROCK
Silhouette
SOM-SC
SyncNet
Sync-SOM 
TTSAS
X-Means

Oscillatory networks and neural networks (module pyclustering.nnet):

ModelPythonC++
CNN (Chaotic Neural Network) 
fSync (Oscillatory network based on Landau-Stuart equation and Kuramoto model) 
HHN (Oscillatory network based on Hodgkin-Huxley model)
Hysteresis Oscillatory Network 
LEGION (Local Excitatory Global Inhibitory Oscillatory Network)
PCNN (Pulse-Coupled Neural Network)
SOM (Self-Organized Map)
Sync (Oscillatory network based on Kuramoto model)
SyncPR (Oscillatory network for pattern recognition)
SyncSegm (Oscillatory network for image segmentation)

Graph Coloring Algorithms (module pyclustering.gcolor):

AlgorithmPythonC++
DSatur 
Hysteresis 
GColorSync 

Containers (module pyclustering.container):

AlgorithmPythonC++
KD Tree
CF Tree 

Examples in the Library

The library contains examples for each algorithm and oscillatory network model:

Clustering examples:pyclustering/cluster/examples

Graph coloring examples:pyclustering/gcolor/examples

Oscillatory network examples:pyclustering/nnet/examples

Where are examples?

Code Examples

Data clustering by CURE algorithm

frompyclustering.clusterimportcluster_visualizer;frompyclustering.cluster.cureimportcure;frompyclustering.utilsimportread_sample;frompyclustering.samples.definitionsimportFCPS_SAMPLES;# Input data in following format [ [0.1, 0.5], [0.3, 0.1], ... ].input_data=read_sample(FCPS_SAMPLES.SAMPLE_LSUN);# Allocate three clusters.cure_instance=cure(input_data,3);cure_instance.process();clusters=cure_instance.get_clusters();# Visualize allocated clusters.visualizer=cluster_visualizer();visualizer.append_clusters(clusters,input_data);visualizer.show();

Data clustering by K-Means algorithm

frompyclustering.cluster.kmeansimportkmeans,kmeans_visualizerfrompyclustering.cluster.center_initializerimportkmeans_plusplus_initializerfrompyclustering.samples.definitionsimportFCPS_SAMPLESfrompyclustering.utilsimportread_sample# Load list of points for cluster analysis.sample=read_sample(FCPS_SAMPLES.SAMPLE_TWO_DIAMONDS)# Prepare initial centers using K-Means++ method.initial_centers=kmeans_plusplus_initializer(sample,2).initialize()# Create instance of K-Means algorithm with prepared centers.kmeans_instance=kmeans(sample,initial_centers)# Run cluster analysis and obtain results.kmeans_instance.process()clusters=kmeans_instance.get_clusters()final_centers=kmeans_instance.get_centers()# Visualize obtained resultskmeans_visualizer.show_clusters(sample,clusters,final_centers)

Data clustering by OPTICS algorithm

frompyclustering.clusterimportcluster_visualizerfrompyclustering.cluster.opticsimportoptics,ordering_analyser,ordering_visualizerfrompyclustering.samples.definitionsimportFCPS_SAMPLESfrompyclustering.utilsimportread_sample# Read sample for clustering from some filesample=read_sample(FCPS_SAMPLES.SAMPLE_LSUN)# Run cluster analysis where connectivity radius is bigger than realradius=2.0neighbors=3amount_of_clusters=3optics_instance=optics(sample,radius,neighbors,amount_of_clusters)# Performs cluster analysisoptics_instance.process()# Obtain results of clusteringclusters=optics_instance.get_clusters()noise=optics_instance.get_noise()ordering=optics_instance.get_ordering()# Visualize ordering diagramanalyser=ordering_analyser(ordering)ordering_visualizer.show_ordering_diagram(analyser,amount_of_clusters)# Visualize clustering resultsvisualizer=cluster_visualizer()visualizer.append_clusters(clusters,sample)visualizer.show()

Simulation of oscillatory network PCNN

frompyclustering.nnet.pcnnimportpcnn_network,pcnn_visualizer# Create Pulse-Coupled neural network with 10 oscillators.net=pcnn_network(10)# Perform simulation during 100 steps using binary external stimulus.dynamic=net.simulate(50, [1,1,1,0,0,0,0,1,1,1])# Allocate synchronous ensembles from the output dynamic.ensembles=dynamic.allocate_sync_ensembles()# Show output dynamic.pcnn_visualizer.show_output_dynamic(dynamic,ensembles)

Simulation of chaotic neural network CNN

frompyclustering.clusterimportcluster_visualizerfrompyclustering.samples.definitionsimportSIMPLE_SAMPLESfrompyclustering.utilsimportread_samplefrompyclustering.nnet.cnnimportcnn_network,cnn_visualizer# Load stimulus from file.stimulus=read_sample(SIMPLE_SAMPLES.SAMPLE_SIMPLE3)# Create chaotic neural network, amount of neurons should be equal to amount of stimulus.network_instance=cnn_network(len(stimulus))# Perform simulation during 100 steps.steps=100output_dynamic=network_instance.simulate(steps,stimulus)# Display output dynamic of the network.cnn_visualizer.show_output_dynamic(output_dynamic)# Display dynamic matrix and observation matrix to show clustering phenomenon.cnn_visualizer.show_dynamic_matrix(output_dynamic)cnn_visualizer.show_observation_matrix(output_dynamic)# Visualize clustering results.clusters=output_dynamic.allocate_sync_ensembles(10)visualizer=cluster_visualizer()visualizer.append_clusters(clusters,stimulus)visualizer.show()

Illustrations

Cluster allocation on FCPS dataset collection by DBSCAN:

Clustering by DBSCAN

Cluster allocation by OPTICS using cluster-ordering diagram:

Clustering by OPTICS

Partial synchronization (clustering) in Sync oscillatory network:

Partial synchronization in Sync oscillatory network

Cluster visualization by SOM (Self-Organized Feature Map)

Cluster visualization by SOM


[8]ページ先頭

©2009-2025 Movatter.jp