- Notifications
You must be signed in to change notification settings - Fork0
New distributions
akmn35/new.dist
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Repository files navigation
The aim is to develop an R package, which is new.dist package, for theprobability (density) function, the distribution function, the quantilefunction and the associated random number generation function fordiscrete and continuous distributions, which have recently been proposedin the literature. This package implements the following distributions:The Power Muth Distribution, A bimodal Weibull Distribution, TheDiscrete Lindley Distribution 1, The Discrete Lindley Distribution 2,The Gamma-Lomax Distribution, Weighted Geometric Distribution, A PowerLog-Dagum Distribution, Kumaraswamy Distribution, Lindley Distribution,Ram Awadh Distribution, The Unit-Inverse Gaussian Distribution, EPDistribution, Akash Distribution, Ishita Distribution, MaxwellDistribution, The Standard Omega Distribution, Slashed GeneralizedRayleigh Distribution, Two-Parameter Rayleigh Distribution, MuthDistribution, Uniform-Geometric Distribution, Discrete WeibullDistribution.
You can install the development version of new.dist from[GitHub][https://github.com/] with:
# install.packages("devtools")devtools::install_github("akmn35/new.dist")
new.dist Density, distribution function, quantile function and randomgeneration for parameter estimation of distributions.
dbwd Density function for Bimodal Weibull distribution with shape(alpha) and scale (beta) parameters.
library(new.dist)dbwd(1,alpha=2,beta=3,sigma=4)#> [1] 0.01594262
pbwd Distribution function for Bimodal Weibull distribution with shape(alpha) and scale (beta) parameters.
library(new.dist)pbwd(1,alpha=2,beta=3,sigma=4)#> [1] 0.003859685
qbwd Quantile function for Bimodal Weibull distribution with shape(alpha) and scale (beta) parameters.
library(new.dist)qbwd(.7,alpha=2,beta=3,sigma=4)#> [1] 4.759942
rbwd Random generation for a Bimodal Weibull distribution with shape(alpha) and scale (beta) parameters.
library(new.dist)rbwd(5,alpha=2,beta=3,sigma=4)#> [1] 5.787403 3.062926 2.560047 3.406179 2.344262
dsgrd Density function for a Slashed Generalized Rayleigh distributionwith shape (alpha), scale (theta) and kurtosis(beta) parameters.
library(new.dist)dsgrd(2,theta=3,alpha=1,beta=4)#> [1] 0.08314235
psgrd Distribution function for a Slashed Generalized Rayleighdistribution with shape (alpha), scale (theta) and kurtosis (beta)parameters.
library(new.dist)psgrd(5,theta=3,alpha=1,beta=4)#> [1] 0.9989333
qsgrd Quantile function for a Slashed Generalized Rayleighdistribution with shape (alpha), scale (theta) and kurtosis (beta)parameters.
library(new.dist)qsgrd(.4,theta=3,alpha=1,beta=4)#> [1] 0.8358487
rsgrd Random generation for a Slashed Generalized Rayleighdistribution with shape (alpha), scale (theta) and kurtosis (beta)parameters.
library(new.dist)rsgrd(5,theta=3,alpha=1,beta=4)#> [1] 0.9162424 2.2939520 0.9160551 0.7168782 1.2676308
dsod Density function for a the Standard Omega distribution with alphaand beta parameters.
library(new.dist)dsod(0.4,alpha=1,beta=2)#> [1] 0.6986559
psod Distribution function for a the Standard Omega distribution withalpha and beta parameters.
library(new.dist)psod(0.4,alpha=1,beta=2)#> [1] 0.1490371
qsod Quantile function for a the Standard Omega distribution withalpha and beta parameters.
library(new.dist)qsod(.8,alpha=1,beta=2)#> [1] 0.9607689
rsod Random generation for a the Standard Omega distribution withalpha and beta parameters.
library(new.dist)rsod(5,alpha=1,beta=2)#> [1] 0.9626043 0.6029560 0.8908171 0.9719128 0.6324489
dugd Density function for the Uniform-Geometric distribution withtheta parameter.
library(new.dist)dugd(1,theta=0.5)#> [1] 0.6931472
pugd Distribution function for the Uniform-Geometric distribution withtheta parameter.
library(new.dist)pugd(1,theta=.5)#> [1] 0.6931472
qugd Quantile function for the Uniform-Geometric distribution withtheta parameter.
library(new.dist)qugd(0.6,theta=.1)#> [1] 4
rugd Random generation for the Uniform-Geometric distribution withtheta parameter.
library(new.dist)rugd(5,theta=.1)#> [1] 1 13 13 5 9
dtpmd Density function for the Power Muth distribution with shape(beta) and scale (alpha) parameters.
library(new.dist)dtpmd(1,beta=2,alpha=3)#> [1] 0.04952547
ptpmd Distribution function for the Power Muth distribution shape(beta) and scale (alpha) parameters.
library(new.dist)ptpmd(1,beta=2,alpha=3)#> [1] 0.008115344
qtpmd Quantile function for the Power Muth distribution with shape(beta) and scale (alpha) parameters.
library(new.dist)qtpmd(.5,beta=2,alpha=3)#> [1] 1.990084
rtpmd Random generation for the Power Muth distribution with shape(beta) and scale (alpha) parameters.
library(new.dist)rtpmd(5,beta=2,alpha=3)#> [1] 1.806067 1.668991 1.865928 1.775550 1.721437
dtprd Density function for the Two-Parameter Rayleigh distributionwith location (mu) and scale (lambda) parameters.
library(new.dist)dtprd(5,lambda=4,mu=4)#> [1] 0.1465251
ptprd Distribution function for Two-Parameter Rayleigh distributionwith location (mu) and scale (lambda) parameters.
library(new.dist)ptprd(2,lambda=2,mu=1)#> [1] 0.8646647
qtprd Quantile function for Two-Parameter Rayleigh distribution withlocation (mu) and scale (lambda) parameters.
library(new.dist)qtprd(.5,lambda=2,mu=1)#> [1] 1.588705
rtprd Random generation for Two-Parameter Rayleigh distribution withlocation (mu) and scale (lambda) parameters.
library(new.dist)rtprd(5,lambda=2,mu=1)#> [1] 2.137743 1.385888 1.788912 1.696368 1.783938
duigd Density function for the Unit Inverse Gaussian distribution withmean (mu) and scale (lambda) parameters.
library(new.dist)duigd(1,mu=2,lambda=3)#> [1] 0.4749088
puigd Distribution function for the Unit Inverse Gaussian distributionwith mean (mu) and scale (lambda) parameters.
library(new.dist)puigd(1,mu=2,lambda=3)#> [1] 0.2873867
quigd Quantile function for the Unit Inverse Gaussian distributionwith mean (mu) and scale (lambda) parameters.
library(new.dist)quigd(.1,mu=2,lambda=3)#> [1] 0.6104128
ruigd Random generation for the Unit Inverse Gaussian distributionwith mean (mu) and scale (lambda) parameters.
library(new.dist)ruigd(5,mu=2,lambda=3)#> [1] 1.7037855 2.8067345 0.8597714 0.7931621 1.0315418
dwgd Density function for the Weighted Geometric distribution withalpha and lambda parameters.
library(new.dist)dwgd(1,alpha=.2,lambda=3)#> [1] 0.79872
pwgd Distribution function for the Weighted Geometric distributionwith alpha and lambda parameters.
library(new.dist)dwgd(1,alpha=.2,lambda=3)#> [1] 0.79872
qwgd Quantile function for the Weighted Geometric distribution withalpha and lambda parameters.
library(new.dist)qwgd(.98,alpha=.2,lambda=3)#> [1] 3
rwgd Random generation for the Weighted Geometric distribution withalpha and lambda parameters.
library(new.dist)rwgd(5,alpha=.2,lambda=3)#> [1] 1 1 3 1 2
ddLd1 Density function for the Discrete Lindley distribution 1 withtheta parameter.
library(new.dist)ddLd1(1,theta=2)#> [1] 0.1828223
pdLd1 Distribution function for the Discrete Lindley distribution 1with theta parameter.
library(new.dist)ddLd1(1,theta=2)#> [1] 0.1828223
qdLd1 Quantile function for the Discrete Lindley distribution 1 withtheta parameter.
library(new.dist)qdLd1(.993,theta=2)#> [1] 3
rdLd1 Random generation for the Discrete Lindley distribution 1 withtheta parameter.
library(new.dist)rdLd1(5,theta=1)#> [1] 0 2 0 2 0
dmd Density function for Maxwell distribution with scale (theta)parameter.
library(new.dist)dmd(1,theta=2)#> [1] 0.4839414
pmd Distribution function for a Maxwell distribution with scale(theta) parameter.
library(new.dist)pmd(1,theta=2)#> [1] 0.198748
qmd Quantile function for a Maxwell distribution with scale (theta)parameter.
library(new.dist)qmd(.4,theta=5)#> [1] 2.161694
rmd Random generation for a Maxwell distribution with scale (theta)parameter.
library(new.dist)rmd(5,theta=1)#> [1] 0.9270855 2.2550202 1.2018527 0.9012689 1.6375431
dkd Density function for Kumaraswamy distribution with shape (alpha,lambda) parameters.
library(new.dist)dkd(0.1,lambda=2,alpha=3)#> [1] 0.58806
pkd Distribution function for Kumaraswamy distribution with shape(alpha, lambda) parameters.
library(new.dist)dkd(0.1,lambda=2,alpha=3)#> [1] 0.58806
qkd Quantile function for Kumaraswamy distribution with shape (alpha,lambda) parameters.
library(new.dist)pkd(0.5,lambda=2,alpha=3)#> [1] 0.578125
rkd Random generation for Kumaraswamy distribution with shape (alpha,lambda) parameters.
library(new.dist)rkd(5,lambda=2,alpha=3)#> [1] 0.6415521 0.5272059 0.2329670 0.4351743 0.5657495
dgld Density function for the Gamma-Lomax distribution with shape (a,alpha) and scale (beta) parameters.
library(new.dist)dgld(1,a=2,alpha=3,beta=4)#> [1] 0.2056491
pgld Distribution function for the Gamma-Lomax distribution with shape(a, alpha) and scale (beta) parameters.
library(new.dist)dgld(1,a=2,alpha=3,beta=4)#> [1] 0.2056491
qgld Quantile function for the Gamma-Lomax distribution with shape (a,alpha) and scale (beta) parameters.
library(new.dist)qgld(.8,a=2,alpha=3,beta=4)#> [1] 6.852518
rgld Random generation for the Gamma-Lomax distribution with shape (a,alpha) and scale (beta) parameters.
library(new.dist)rgld(5,a=2,alpha=3,beta=4)#> [1] 2.8217781 5.5886484 8.4958716 0.9864014 2.1699043
ddLd2 Density function for a Discrete Lindley distribution 2 withtheta parameter.
library(new.dist)ddLd2(2,theta=2)#> [1] 0.03530023
pdLd2 Distribution function for a Discrete Lindley distribution 2 withtheta parameter.
library(new.dist)pdLd2(1,theta=2)#> [1] 0.9572635
qdLd2 Quantile function for a Discrete Lindley distribution 2 withtheta parameter.
library(new.dist)qdLd2(.5,theta=2)#> [1] 0
rdLd2 Random generation for a Discrete Lindley distribution 2 withtheta parameter.
library(new.dist)rdLd2(5,theta=1)#> [1] 3 0 1 0 0
dEPd Density function for the EP distribution with lambda and betaparameters.
library(new.dist)dEPd(1,lambda=2,beta=3)#> [1] 0.05165063
pEPd Distribution function for the EP distribution with lambda andbeta parameters.
library(new.dist)pEPd(1,lambda=2,beta=3)#> [1] 0.9836125
qEPd Quantile function for the EP distribution with lambda and betaparameters.
library(new.dist)qEPd(.8,lambda=2,beta=3)#> [1] 0.295895
rEPd Random generation for the EP distribution with lambda and betaparameters.
library(new.dist)rEPd(5,lambda=2,beta=3)#> [1] 0.08754699 0.01152708 0.27621565 0.12618652 0.18547342
dRA Density function for a Ram Awadh distribution with scale (theta)parameter.
library(new.dist)dRA(1,theta=2)#> [1] 0.1412194
pRA Distribution function for a Ram Awadh distribution with scale(theta) parameter.
library(new.dist)pRA(1,theta=2)#> [1] 0.3115553
qRA Quantile function for a Ram Awadh distribution with scale (theta)parameter.
library(new.dist)dRA(.8,theta=2)#> [1] 0.163461
rRA Random generation for a Ram Awadh distribution with scale (theta)parameter.
library(new.dist)rRA(5,theta=2)#> [1] 0.9774141 2.8355960 1.9192415 4.0137512 2.5296763
domd Density function for the Muth distribution with alpha parameter.
library(new.dist)domd(1,alpha=.2)#> [1] 0.4123689
pomd Distribution function for the Muth distribution with alphaparameter.
library(new.dist)pomd(1,alpha=.2)#> [1] 0.596272
qomd Quantile function for the Muth distribution with alpha parameter.
library(new.dist)qomd(.8,alpha=.2)#> [1] 1.637047
romd Random generation for the Muth distribution with alpha parameter.
library(new.dist)romd(5,alpha=.2)#> [1] 2.291542 1.144422 1.345481 2.172140 1.377844
dpldd Density function for a Power Log Dagum distribution with alpha,beta and theta parameters.
library(new.dist)dpldd(1,alpha=2,beta=3,theta=4)#> [1] 0.1766842
ppldd Distribution function for a Power Log Dagum distribution withalpha, beta and theta parameters.
library(new.dist)ppldd(1,alpha=2,beta=3,theta=4)#> [1] 0.9742603
qpldd Quantile function for a Power Log Dagum distribution with alpha,beta and theta parameters.
library(new.dist)qpldd(.8,alpha=2,beta=3,theta=4)#> [1] 0.6109249
rpldd Random generation for a Power Log Dagum distribution with alpha,beta and theta parameters.
library(new.dist)rpldd(5,alpha=2,beta=3,theta=4)#> [1] 0.05775973 -0.28725832 0.53623427 0.64797737 0.01620600
dLd Density function for Lindley distribution with theta parameter.
library(new.dist)dLd(1,theta=2)#> [1] 0.3608941
pLd Distribution function for Lindley distribution with thetaparameter.
library(new.dist)pLd(1,theta=2)#> [1] 0.7744412
qLd Quantile function for Lindley distribution with theta parameter.
library(new.dist)qLd(.5,theta=2)#> [1] 0.4872058
rLd Random generation for Lindley distribution with theta parameter.
library(new.dist)rLd(5,theta=1)#> [1] 0.3935864 1.7494001 0.2860219 1.1050805 1.8812775
Department of Statistics, Faculty of Science, Selcuk University, 42250,Konya, Turkey
Email:coskun@selcuk.edu.tr
Akdoğan, Y., Kuş, C., Asgharzadeh, A., Kınacı, İ., & Sharafi, F. (2016).Uniform-geometric distribution. Journal of Statistical Computation andSimulation, 86(9), 1754-1770.
Akgül, F. G., Acıtaş, Ş. ve Şenoğlu, B., 2018,Inferences onstress–strength reliability based on ranked set sampling data in case ofLindley distribution, Journal of statistical computation andsimulation, 88 (15), 3018-3032.
Bakouch, H. S., Khan, M. N., Hussain, T. ve Chesneau, C., 2019,A powerlog-Dagum distribution: estimation and applications, Journal of AppliedStatistics, 46 (5), 874-892.
Bakouch, H. S., Jazi, M. A. ve Nadarajah, S., 2014,A new discretedistribution, Statistics, 48 (1), 200-240.
Birbiçer, İ. ve Genç, A. İ., 2022,On parameter estimation of thestandard omega distribution. Journal of Applied Statistics, 1-17.
Cordeiro, G. M., Ortega, E. M. ve Popović, B. V., 2015,The gamma-Lomaxdistribution, Journal of statistical computation and simulation, 85(2), 305-319.
Dey, S., Dey, T. ve Kundu, D., 2014,Two-parameter Rayleighdistribution: different methods of estimation, American Journal ofMathematical and Management Sciences, 33 (1), 55-74.
Ghitany, M., Mazucheli, J., Menezes, A. ve Alqallaf, F., 2019,Theunit-inverse Gaussian distribution: A new alternative to two-parameterdistributions on the unit interval, Communications in Statistics-Theoryand Methods, 48 (14), 3423-3438.
Gómez-Déniz, E. ve Calderín-Ojeda, E., 2011,The discrete Lindleydistribution: properties and applications.Journal of statisticalcomputation and simulation, 81 (11), 1405-1416.
Iriarte, Y. A., Vilca, F., Varela, H. ve Gómez, H. W., 2017,Slashedgeneralized Rayleigh distribution, Communications in Statistics-Theoryand Methods, 46 (10), 4686-4699.
Jodra, P., Gomez, H. W., Jimenez-Gamero, M. D., & Alba-Fernandez, M. V.(2017).The power Muth distribution . Mathematical Modelling andAnalysis, 22(2), 186-201.
Jodrá, P., Jiménez-Gamero, M. D. ve Alba-Fernández, M. V., 2015,On theMuth distribution, Mathematical Modelling and Analysis, 20 (3),291-310.
Kohansal, A. ve Bakouch, H. S., 2021,Estimation procedures forKumaraswamy distribution parameters under adaptive type-II hybridprogressive censoring, Communications in Statistics-Simulation andComputation, 50 (12), 4059-4078.
Krishna, H., Vivekanand ve Kumar, K., 2015,Estimation in Maxwelldistribution with randomly censored data, Journal of statisticalcomputation and simulation, 85 (17), 3560-3578.
Kuş, C., 2007,A new lifetime distribution, Computational Statistics &Data Analysis, 51 (9), 4497-4509.
Najarzadegan, H., Alamatsaz, M. H., Kazemi, I. ve Kundu, D., 2020,Weighted bivariate geometric distribution: Simulation and estimation,Communications in Statistics-Simulation and Computation, 49 (9),2419-2443.
Ristić, M. M., & Balakrishnan, N. (2012),The gamma-exponentiatedexponential distribution. Journal of statistical computation andsimulation, 82(8), 1191-1206.
Shukla, K. K., Shanker, R. ve Tiwari, M. K., 2022,A new one parameterdiscrete distribution and its applications, Journal of Statistics andManagement Systems, 25 (1), 269-283.
Vila, R. ve Niyazi Çankaya, M., 2022,A bimodal Weibull distribution:properties and inference,Journal of Applied Statistics, 49 (12),3044-3062.
About
New distributions
Resources
Uh oh!
There was an error while loading.Please reload this page.
Stars
Watchers
Forks
Packages0
Uh oh!
There was an error while loading.Please reload this page.
