Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings
NotificationsYou must be signed in to change notification settings

aixcoder-plugin/aixcoder-7b-v2

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

This repository contains the implementation of CoLT in our papers, a novel fine-tuning approach for enhancing large language models' ability to utilize information within long contexts for code completion tasks.

Resources

Dataset

Models

Experiment Reproduction

We use the latest TRL framework(https://github.com/huggingface/trl) code for our experiments. To reproduce our results:

1. Prompt Construction Files

  • aiXcoder-colt/prompt/prompt_aixcoder_colt.py
  • aiXcoder-colt/prompt/prompt_codellama.py
  • aiXcoder-colt/prompt/prompt_codeqwen.py
  • aiXcoder-colt/prompt/prompt_deepseekcoder.py

2. Training Scripts

  • SFT (Supervised Fine-Tuning): See scripts inaiXcoder-colt/commands/sft/
  • DPO (Direct Preference Optimization): See scripts inaiXcoder-colt/commands/po/

3. Reject Sampling for DPO

TheaiXcoder-colt/Reject_Sample/ directory contains implementation and evaluation scripts for our reject sampling approach used in Direct Preference Optimization:

  • Model-specific implementations:

    • aixcoder/: Reject sampling for aiXcoder model
    • codellama/: Reject sampling for Code Llama model
    • deepseek/: Reject sampling for DeepSeek-Coder model
  • Evaluation scripts:

    • eval_api.py: API-based evaluation script
    • eval_line.py: Line-level evaluation script
    • eval_span.py: Span-level evaluation script
    • inference.py: Model inference script for generating completions

Dependencies

In our experiments, we utilized two Docker environments for TRL training and vLLM (reject sampling). Below are the key dependencies for each environment, excluding redundant packages:

TRL Training Environment:

  • transformers==4.46.0.dev0
  • torch==2.4.0a0+07cecf4168.nv24.5
  • accelerate==1.0.0
  • deepspeed==0.15.2
  • peft==0.13.1
  • flash-attn==2.4.2
  • datasets==3.0.1
  • wandb==0.15.0

vLLM Inference Environment:

  • vllm==0.6.0+cu124
  • torch==2.4.0
  • transformers==4.44.2
  • vllm-flash-attn==2.6.1
  • xformers==0.0.27.post2
  • flashinfer==0.1.6+cu121torch2.4
  • fastapi==0.114.1
  • uvicorn==0.30.6

Complete dependency lists can be found in thedependency directory.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors2

  •  
  •  

[8]ページ先頭

©2009-2025 Movatter.jp