- Notifications
You must be signed in to change notification settings - Fork113
Python client for the Socrata Open Data API
License
afeld/sodapy
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
sodapy is a python client for theSocrata Open Data API.
You can install withpip install sodapy
.
If you want to install from source, then clone this repository and runpython setup.py install
from the project root.
At its core, this library depends heavily on theRequests package. All other requirements can be found inrequirements.txt.sodapy
is currently compatible with Python 3.5, 3.6, 3.7, 3.8, 3.9, and 3.10.
Theofficial Socrata Open Data API docs provide thorough documentation of the available methods, as well asother client libraries. A quick list of eligible domains to use with this API is available via theSocrata Discovery API orSocrata's Open Data Network.
This library supports writing directly to datasets with the Socrata Open Data API. For write operations that use data transformations in the Socrata Data Management Experience (the user interface for creating datasets), use the Socrata Data Management API. For more details on when to use SODA vs the Data Management API, see theData Management API documentation. A Python SDK for the Socrata Data Management API can be found atsocrata-py.
There are someJupyter notebooks in theexamples directory with usage examples of sodapy in action.
- client
datasets
get
get_all
get_metadata
update_metadata
download_attachments
create
publish
set_permission
upsert
replace
create_non_data_file
replace_non_data_file
delete
close
Import the library and set up a connection to get started.
fromsodapyimportSocrataclient=Socrata("sandbox.demo.socrata.com","FakeAppToken",username="fakeuser@somedomain.com",password="mypassword",timeout=10)
username
andpassword
are only required for creating or modifying data. An application token isn't strictly required (can beNone
), but queries executed from a client without an application token will be subjected to strict throttling limits. You may want to increase thetimeout
seconds when making large requests. To create a bare-bones client:
client=Socrata("sandbox.demo.socrata.com",None)
A client can also be created with a context manager to obviate the need for teardown:
withSocrata("sandbox.demo.socrata.com",None)asclient:# do some stuff
The client, by default, makes requests over HTTPS. To modify this behavior, or to make requests through a proxy, take a lookhere.
Retrieve datasets associated with a particular domain. The optionallimit
andoffset
keyword args can be used to retrieve a subset of the datasets. By default, all datasets are returned.
>>> client.datasets()[{"resource" : {"name" : "Approved Building Permits", "id" : "msk6-43c6", "parent_fxf" : null, "description" : "Data of approved building/construction permits",...}, {resource : {...}}, ...]
Retrieve data from the requested resources. Filter and query data by field name, id, or usingSoQL keywords.
>>> client.get("nimj-3ivp", limit=2)[{u'geolocation': {u'latitude': u'41.1085', u'needs_recoding': False, u'longitude': u'-117.6135'}, u'version': u'9', u'source': u'nn', u'region': u'Nevada', u'occurred_at': u'2012-09-14T22:38:01', u'number_of_stations': u'15', u'depth': u'7.60', u'magnitude': u'2.7', u'earthquake_id': u'00388610'}, {...}]>>> client.get("nimj-3ivp", where="depth > 300", order="magnitude DESC", exclude_system_fields=False)[{u'geolocation': {u'latitude': u'-15.563', u'needs_recoding': False, u'longitude': u'-175.6104'}, u'version': u'9', u':updated_at': 1348778988, u'number_of_stations': u'275', u'region': u'Tonga', u':created_meta': u'21484', u'occurred_at': u'2012-09-13T21:16:43', u':id': 132, u'source': u'us', u'depth': u'328.30', u'magnitude': u'4.8', u':meta': u'{\n}', u':updated_meta': u'21484', u'earthquake_id': u'c000cnb5', u':created_at': 1348778988}, {...}]>>> client.get("nimj-3ivp/193", exclude_system_fields=False){u'geolocation': {u'latitude': u'21.6711', u'needs_recoding': False, u'longitude': u'142.9236'}, u'version': u'C', u':updated_at': 1348778988, u'number_of_stations': u'136', u'region': u'Mariana Islands region', u':created_meta': u'21484', u'occurred_at': u'2012-09-13T11:19:07', u':id': 193, u'source': u'us', u'depth': u'300.70', u'magnitude': u'4.4', u':meta': u'{\n}', u':updated_meta': u'21484', u':position': 193, u'earthquake_id': u'c000cmsq', u':created_at': 1348778988}>>> client.get("nimj-3ivp", region="Kansas")[{u'geolocation': {u'latitude': u'38.10', u'needs_recoding': False, u'longitude': u'-100.6135'}, u'version': u'9', u'source': u'nn', u'region': u'Kansas', u'occurred_at': u'2010-09-19T20:52:09', u'number_of_stations': u'15', u'depth': u'300.0', u'magnitude': u'1.9', u'earthquake_id': u'00189621'}, {...}]
Read data from the requested resource, paginating over all results. Accepts the same arguments asget()
. Returns a generator.
>>> client.get_all("nimj-3ivp")<generator object Socrata.get_all at 0x7fa0dc8be7b0>>>> for item in client.get_all("nimj-3ivp"):... print(item)...{'geolocation': {'latitude': '-15.563', 'needs_recoding': False, 'longitude': '-175.6104'}, 'version': '9', ':updated_at': 1348778988, 'number_of_stations': '275', 'region': 'Tonga', ':created_meta': '21484', 'occurred_at': '2012-09-13T21:16:43', ':id': 132, 'source': 'us', 'depth': '328.30', 'magnitude': '4.8', ':meta': '{\n}', ':updated_meta': '21484', 'earthquake_id': 'c000cnb5', ':created_at': 1348778988}...>>> import itertools>>> items = client.get_all("nimj-3ivp")>>> first_five = list(itertools.islice(items, 5))>>> len(first_five)5
Retrieve the metadata associated with a particular dataset.
>>> client.get_metadata("nimj-3ivp"){"newBackend": false, "licenseId": "CC0_10", "publicationDate": 1436655117, "viewLastModified": 1451289003, "owner": {"roleName": "administrator", "rights": [], "displayName": "Brett", "id": "cdqe-xcn5", "screenName": "Brett"}, "query": {}, "id": "songs", "createdAt": 1398014181, "category": "Public Safety", "publicationAppendEnabled": true, "publicationStage": "published", "rowsUpdatedBy": "cdqe-xcn5", "publicationGroup": 1552205, "displayType": "table", "state": "normal", "attributionLink": "http://foo.bar.com", "tableId": 3523378, "columns": [], "metadata": {"rdfSubject": "0", "renderTypeConfig": {"visible": {"table": true}}, "availableDisplayTypes": ["table", "fatrow", "page"], "attachments": ... }}
Update the metadata for a particular dataset.update_fields
should be a dictionary containing only the metadata keys that you wish to overwrite.
Note: Invalid payloads to this method could corrupt the dataset or visualization. Seethis comment for more information.
>>> client.update_metadata("nimj-3ivp", {"attributionLink": "https://anothertest.com"}){"newBackend": false, "licenseId": "CC0_10", "publicationDate": 1436655117, "viewLastModified": 1451289003, "owner": {"roleName": "administrator", "rights": [], "displayName": "Brett", "id": "cdqe-xcn5", "screenName": "Brett"}, "query": {}, "id": "songs", "createdAt": 1398014181, "category": "Public Safety", "publicationAppendEnabled": true, "publicationStage": "published", "rowsUpdatedBy": "cdqe-xcn5", "publicationGroup": 1552205, "displayType": "table", "state": "normal", "attributionLink": "https://anothertest.com", "tableId": 3523378, "columns": [], "metadata": {"rdfSubject": "0", "renderTypeConfig": {"visible": {"table": true}}, "availableDisplayTypes": ["table", "fatrow", "page"], "attachments": ... }}
Download all attachments associated with a dataset. Return a list of paths to the downloaded files.
>>> client.download_attachments("nimj-3ivp", download_dir="~/Desktop") ['/Users/xmunoz/Desktop/nimj-3ivp/FireIncident_Codes.PDF', '/Users/xmunoz/Desktop/nimj-3ivp/AccidentReport.jpg']
Create a new dataset. Optionally, specify keyword args such as:
description
description of the datasetcolumns
list of fieldscategory
dataset category (must exist in /admin/metadata)tags
list of tag stringsrow_identifier
field name of primary keynew_backend
whether to create the dataset in the new backend
Example usage:
>>> columns = [{"fieldName": "delegation", "name": "Delegation", "dataTypeName": "text"}, {"fieldName": "members", "name": "Members", "dataTypeName": "number"}]>>> tags = ["politics", "geography"]>>> client.create("Delegates", description="List of delegates", columns=columns, row_identifier="delegation", tags=tags, category="Transparency"){u'id': u'2frc-hyvj', u'name': u'Foo Bar', u'description': u'test dataset', u'publicationStage': u'unpublished', u'columns': [ { u'name': u'Foo', u'dataTypeName': u'text', u'fieldName': u'foo', ... }, { u'name': u'Bar', u'dataTypeName': u'number', u'fieldName': u'bar', ... } ], u'metadata': { u'rowIdentifier': 230641051 }, ... }
Publish a dataset after creating it, i.e. take it out of 'working copy' mode. The dataset idid
returned fromcreate
will be used to publish.
>>> client.publish("2frc-hyvj"){u'id': u'2frc-hyvj', u'name': u'Foo Bar', u'description': u'test dataset', u'publicationStage': u'unpublished', u'columns': [ { u'name': u'Foo', u'dataTypeName': u'text', u'fieldName': u'foo', ... }, { u'name': u'Bar', u'dataTypeName': u'number', u'fieldName': u'bar', ... } ], u'metadata': { u'rowIdentifier': 230641051 }, ... }
Set the permissions of a dataset to public or private.
>>> client.set_permission("2frc-hyvj", "public")<Response [200]>
Create a new row in an existing dataset.
>>> data = [{'Delegation': 'AJU', 'Name': 'Alaska', 'Key': 'AL', 'Entity': 'Juneau'}]>>> client.upsert("eb9n-hr43", data){u'Errors': 0, u'Rows Deleted': 0, u'Rows Updated': 0, u'By SID': 0, u'Rows Created': 1, u'By RowIdentifier': 0}
Update/Delete rows in a dataset.
>>> data = [{'Delegation': 'sfa', ':id': 8, 'Name': 'bar', 'Key': 'doo', 'Entity': 'dsfsd'}, {':id': 7, ':deleted': True}]>>> client.upsert("eb9n-hr43", data){u'Errors': 0, u'Rows Deleted': 1, u'Rows Updated': 1, u'By SID': 2, u'Rows Created': 0, u'By RowIdentifier': 0}
upsert
's can even be performed with a csv file.
>>> data = open("upsert_test.csv")>>> client.upsert("eb9n-hr43", data){u'Errors': 0, u'Rows Deleted': 0, u'Rows Updated': 1, u'By SID': 1, u'Rows Created': 0, u'By RowIdentifier': 0}
Similar in usage toupsert
, but overwrites existing data.
>>> data = open("replace_test.csv")>>> client.replace("eb9n-hr43", data){u'Errors': 0, u'Rows Deleted': 0, u'Rows Updated': 0, u'By SID': 0, u'Rows Created': 12, u'By RowIdentifier': 0}
Creates a new file-based dataset with the name provided in the filestuple. A valid file input would be:
files= ( {'file': ("gtfs2",open('myfile.zip','rb'))})
withopen(nondatafile_path,'rb')asf:files= ( {'file': ("nondatafile.zip",f)} )response=client.create_non_data_file(params,files)
Same as create_non_data_file, but replaces a file that already exists in afile-based dataset.
Note: a table-based dataset cannot be replaced by a file-based dataset. Use create_non_data_file in order to replace.
withopen(nondatafile_path,'rb')asf:files= ( {'file': ("nondatafile.zip",f)} )response=client.replace_non_data_file(DATASET_IDENTIFIER, {},files)
Delete an individual row.
>>> client.delete("nimj-3ivp", row_id=2)<Response [200]>
Delete the entire dataset.
>>> client.delete("nimj-3ivp")<Response [200]>
Close the session when you're finished.
client.close()
pytest
SeeCONTRIBUTING.md.
This package was initially created and maintained by@xmunoz. On March 8, 2025, ownership was transferred to@afeld.
This package usessemantic versioning.
Source and wheel distributions are available on PyPI. Here is how I create those releases.
python3 setup.py bdist_wheelpython3 setup.py sdisttwine upload dist/*
About
Python client for the Socrata Open Data API