- Notifications
You must be signed in to change notification settings - Fork46
[NeurIPS2021] Code Release of K-Net: Towards Unified Image Segmentation
License
ZwwWayne/K-Net
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
This is an official release of the paperK-Net:Towards Unified Image Segmentation. K-Net will also be integrated in the future release of MMDetection and MMSegmentation.
K-Net:Towards Unified Image Segmentation,
Wenwei Zhang, Jiangmiao Pang, Kai Chen, Chen Change Loy
In: Proc. Advances in Neural Information Processing Systems (NeurIPS), 2021
[arXiv][project page][Bibetex]
The results of K-Net and their corresponding configs on each segmentation task are shown as below.We have released the full model zoo of panoptic segmentation.The complete model checkpoints and logs for instance and semantic segmentation will be released soon.
Backbone | Method | Crop Size | Lr Schd | mIoU | Config | Download |
---|---|---|---|---|---|---|
R-50 | K-Net + FCN | 512x512 | 80K | 43.3 | config | model |log |
R-50 | K-Net + PSPNet | 512x512 | 80K | 43.9 | config | model |log |
R-50 | K-Net + DeepLabv3 | 512x512 | 80K | 44.6 | config | model |log |
R-50 | K-Net + UPerNet | 512x512 | 80K | 43.6 | config | model |log |
Swin-T | K-Net + UPerNet | 512x512 | 80K | 45.4 | config | model |log |
Swin-L | K-Net + UPerNet | 512x512 | 80K | 52.0 | config | model |log |
Swin-L | K-Net + UPerNet | 640x640 | 80K | 52.7 | config | model |log |
Backbone | Method | Lr Schd | Mask mAP | Config | Download |
---|---|---|---|---|---|
R-50 | K-Net | 1x | 34.0 | config | model |log |
R-50 | K-Net | ms-3x | 37.8 | config | model |log |
R-101 | K-Net | ms-3x | 39.2 | config | model |log |
R-101-DCN | K-Net | ms-3x | 40.5 | config | model |log |
Backbone | Method | Lr Schd | PQ | Config | Download |
---|---|---|---|---|---|
R-50 | K-Net | 1x | 44.3 | config | model |log |
R-50 | K-Net | ms-3x | 47.1 | config | model |log |
R-101 | K-Net | ms-3x | 48.4 | config | model |log |
R-101-DCN | K-Net | ms-3x | 49.6 | config | model |log |
Swin-L (window size 7) | K-Net | ms-3x | 54.6 | config | model |log |
Above on test-dev | 55.2 |
It requires the following OpenMMLab packages:
- MIM >= 0.1.5
- MMCV-full >= v1.3.14
- MMDetection >= v2.17.0
- MMSegmentation >= v0.18.0
- scipy
- panopticapi
pip install openmim scipy mmdet mmsegmentationpip install git+https://github.com/cocodataset/panopticapi.gitmim install mmcv-full
This project is released under theApache 2.0 license.
Prepare data followingMMDetection andMMSegmentation. The data structure looks like below:
data/├── ade│ ├── ADEChallengeData2016│ │ ├── annotations│ │ ├── images├── coco│ ├── annotations│ │ ├── panoptic_{train,val}2017.json│ │ ├── instance_{train,val}2017.json│ │ ├── panoptic_{train,val}2017/ # panoptic png annotations│ │ ├── image_info_test-dev2017.json # for test-dev submissions│ ├── train2017│ ├── val2017│ ├── test2017
For training and testing, you can directly use mim to train and test the model
# train instance/panoptic segmentation modelssh ./tools/mim_slurm_train.sh$PARTITION mmdet$CONFIG$WORK_DIR# test instance segmentation modelssh ./tools/mim_slurm_test.sh$PARTITION mmdet$CONFIG$CHECKPOINT --eval segm# test panoptic segmentation modelssh ./tools/mim_slurm_test.sh$PARTITION mmdet$CONFIG$CHECKPOINT --eval pq# train semantic segmentation modelssh ./tools/mim_slurm_train.sh$PARTITION mmseg$CONFIG$WORK_DIR# test semantic segmentation modelssh ./tools/mim_slurm_test.sh$PARTITION mmseg$CONFIG$CHECKPOINT --eval mIoU
For test submission for panoptic segmentation, you can use the command below:
# we should update the category information in the original image test-dev pkl file# for panoptic segmentationpython -u tools/gen_panoptic_test_info.py# run test-dev submissionsh ./tools/mim_slurm_test.sh$PARTITION mmdet$CONFIG$CHECKPOINT --format-only --cfg-options data.test.ann_file=data/coco/annotations/panoptic_image_info_test-dev2017.json data.test.img_prefix=data/coco/test2017 --eval-options jsonfile_prefix=$WORK_DIR
You can also run training and testing without slurm by directly using mim for instance/semantic/panoptic segmentation like below:
PYTHONPATH='.':$PYTHONPATH mim train mmdet$CONFIG$WORK_DIRPYTHONPATH='.':$PYTHONPATH mim train mmseg$CONFIG$WORK_DIR
- PARTITION: the slurm partition you are using
- CHECKPOINT: the path of the checkpoint downloaded from our model zoo or trained by yourself
- WORK_DIR: the working directory to save configs, logs, and checkpoints
- CONFIG: the config files under the directory
configs/
- JOB_NAME: the name of the job that are necessary for slurm
@inproceedings{zhang2021knet,title={{K-Net: Towards} Unified Image Segmentation},author={Wenwei Zhang and Jiangmiao Pang and Kai Chen and Chen Change Loy},year={2021},booktitle={NeurIPS},}