- Notifications
You must be signed in to change notification settings - Fork2.9k
Open-sourced codes for MiniGPT-4 and MiniGPT-v2 (https://minigpt-4.github.io,https://minigpt-v2.github.io/)
License
BSD-3-Clause, BSD-3-Clause licenses found
Licenses found
Vision-CAIR/MiniGPT-4
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
MiniGPT-v2: Large Language Model as a Unified Interface for Vision-Language Multi-task Learning
Jun Chen, Deyao Zhu, Xiaoqian Shen, Xiang Li, Zechun Liu, Pengchuan Zhang, Raghuraman Krishnamoorthi, Vikas Chandra, Yunyang Xiong☨, Mohamed Elhoseiny☨
☨equal last author
MiniGPT-4: Enhancing Vision-language Understanding with Advanced Large Language Models
Deyao Zhu*, Jun Chen*, Xiaoqian Shen, Xiang Li, Mohamed Elhoseiny
*equal contribution
King Abdullah University of Science and Technology
**Example Community Efforts Built on Top of MiniGPT-4 **
InstructionGPT-4: A 200-Instruction Paradigm for Fine-Tuning MiniGPT-4 Lai Wei, Zihao Jiang, Weiran Huang, Lichao Sun, Arxiv, 2023
PatFig: Generating Short and Long Captions for Patent Figures.", Aubakirova, Dana, Kim Gerdes, and Lufei Liu, ICCVW, 2023
SkinGPT-4: An Interactive Dermatology Diagnostic System with Visual Large Language Model, Juexiao Zhou and Xiaonan He and Liyuan Sun and Jiannan Xu and Xiuying Chen and Yuetan Chu and Longxi Zhou and Xingyu Liao and Bin Zhang and Xin Gao, Arxiv, 2023
ArtGPT-4: Artistic Vision-Language Understanding with Adapter-enhanced MiniGPT-4.", Yuan, Zhengqing, Huiwen Xue, Xinyi Wang, Yongming Liu, Zhuanzhe Zhao, and Kun Wang, Arxiv, 2023
[Oct.31 2023] We release the evaluation code of our MiniGPT-v2.
[Oct.24 2023] We release the finetuning code of our MiniGPT-v2.
[Oct.13 2023] Breaking! We release the first major update with our MiniGPT-v2
[Aug.28 2023] We now provide a llama 2 version of MiniGPT-4
Click the image to chat with MiniGPT-v2 around your images
Click the image to chat with MiniGPT-4 around your images
![]() | ![]() |
![]() | ![]() |
More examples can be found in theproject page.
1. Prepare the code and the environment
Git clone our repository, creating a python environment and activate it via the following command
git clone https://github.com/Vision-CAIR/MiniGPT-4.gitcd MiniGPT-4conda env create -f environment.ymlconda activate minigptv
2. Prepare the pretrained LLM weights
MiniGPT-v2 is based on Llama2 Chat 7B. ForMiniGPT-4, we have both Vicuna V0 and Llama 2 version.Download the corresponding LLM weights from the following huggingface space via clone the repository using git-lfs.
Llama 2 Chat 7B | Vicuna V0 13B | Vicuna V0 7B |
---|---|---|
Download | Downlad | Download |
Then, set the variablellama_model in the model config file to the LLM weight path.
For MiniGPT-v2, set the LLM pathhere at Line 14.
For MiniGPT-4 (Llama2), set the LLM pathhere at Line 15.
For MiniGPT-4 (Vicuna), set the LLM pathhere at Line 18
3. Prepare the pretrained model checkpoints
Download the pretrained model checkpoints
MiniGPT-v2 (after stage-2) | MiniGPT-v2 (after stage-3) | MiniGPT-v2 (online developing demo) |
---|---|---|
Download | Download | Download |
ForMiniGPT-v2, set the path to the pretrained checkpoint in the evaluation config fileineval_configs/minigptv2_eval.yaml at Line 8.
MiniGPT-4 (Vicuna 13B) | MiniGPT-4 (Vicuna 7B) | MiniGPT-4 (LLaMA-2 Chat 7B) |
---|---|---|
Download | Download | Download |
ForMiniGPT-4, set the path to the pretrained checkpoint in the evaluation config fileineval_configs/minigpt4_eval.yaml at Line 8 for Vicuna version oreval_configs/minigpt4_llama2_eval.yaml for LLama2 version.
For MiniGPT-v2, run
python demo_v2.py --cfg-path eval_configs/minigptv2_eval.yaml --gpu-id 0
For MiniGPT-4 (Vicuna version), run
python demo.py --cfg-path eval_configs/minigpt4_eval.yaml --gpu-id 0
For MiniGPT-4 (Llama2 version), run
python demo.py --cfg-path eval_configs/minigpt4_llama2_eval.yaml --gpu-id 0
To save GPU memory, LLMs loads as 8 bit by default, with a beam search width of 1.This configuration requires about 23G GPU memory for 13B LLM and 11.5G GPU memory for 7B LLM.For more powerful GPUs, you can run the modelin 16 bit by settinglow_resource
toFalse
in the relevant config file:
- MiniGPT-v2:minigptv2_eval.yaml
- MiniGPT-4 (Llama2):minigpt4_llama2_eval.yaml
- MiniGPT-4 (Vicuna):minigpt4_eval.yaml
Thanks@WangRongsheng, you can also run MiniGPT-4 onColab
For training details of MiniGPT-4, checkhere.
For finetuning details of MiniGPT-v2, checkhere
For finetuning details of MiniGPT-v2, checkhere
- BLIP2 The model architecture of MiniGPT-4 follows BLIP-2. Don't forget to check this great open-source work if you don't know it before!
- Lavis This repository is built upon Lavis!
- Vicuna The fantastic language ability of Vicuna with only 13B parameters is just amazing. And it is open-source!
- LLaMA The strong open-sourced LLaMA 2 language model.
If you're using MiniGPT-4/MiniGPT-v2 in your research or applications, please cite using this BibTeX:
@article{chen2023minigptv2,title={MiniGPT-v2: large language model as a unified interface for vision-language multi-task learning},author={Chen, Jun and Zhu, Deyao and Shen, Xiaoqian and Li, Xiang and Liu, Zechu and Zhang, Pengchuan and Krishnamoorthi, Raghuraman and Chandra, Vikas and Xiong, Yunyang and Elhoseiny, Mohamed},year={2023},journal={arXiv preprint arXiv:2310.09478},}@article{zhu2023minigpt,title={MiniGPT-4: Enhancing Vision-Language Understanding with Advanced Large Language Models},author={Zhu, Deyao and Chen, Jun and Shen, Xiaoqian and Li, Xiang and Elhoseiny, Mohamed},journal={arXiv preprint arXiv:2304.10592},year={2023}}
This repository is underBSD 3-Clause License.Many codes are based onLavis withBSD 3-Clause Licensehere.
About
Open-sourced codes for MiniGPT-4 and MiniGPT-v2 (https://minigpt-4.github.io,https://minigpt-v2.github.io/)