Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

[ICLR 2022] "Learning Pruning-Friendly Networks via Frank-Wolfe: One-Shot, Any-Sparsity, and No Retraining" by Lu Miao*, Xiaolong Luo*, Tianlong Chen, Wuyang Chen, Dong Liu, Zhangyang Wang

License

NotificationsYou must be signed in to change notification settings

VITA-Group/SFW-Once-for-All-Pruning

Repository files navigation

License: MIT

Code used for paper: [ICLR 2022]Learning Pruning-Friendly Networks via Frank-Wolfe: One-Shot, Any-Sparsity, and No Retraining.

Lu Miao*, Xiaolong Luo*, Tianlong Chen, Wuyang Chen, Dong Liu, Zhangyang Wang

Overview

A novel framework to train a large deep neural network (DNN) for onlyonce, which can then be pruned toany sparsity ratio to preserve competitive accuracywithout any re-training. We propose a sparsity-aware one-shot pruning method based on K-sparse polytope constraint and Stochastic Frank-Wolfe (SFW) optimizer. We also present the firstlearning-based initialization scheme specifically for boosting SFW-based DNN training.

Reproduce

Preliminary

Required environment

  • pytorch >= 1.5.0
  • torchvision

Reproducing details

The following codes can reproduce the experiments involved in the paper.

SFW training for one-shot pruning

The following code is the training step in SFW-pruning framework.

python-utrain_prune.py--datacifar10--archResNet18--optimizerSFW--constraintk_sparse_constraints--lr1.0--lr_schemedynamic_change--momentum0.9--weight_decay0--k_sparseness10--k_frac0.05--tau15--modeinitialization--rescalegradient--sfw_init0--train_batchsize128--test_batchsize128--epoch_num180--color_channel3--gpu-1

The log file is saved in/saved_logs/SFW_one_shot_prune/. The trained model is saved in/saved_models/.

Test pruning performance

The following code conducts (unstructured) pruning and tests the performance of the pruned DNN. Pruning ratios are 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%.

python-utest_prune.py--datacifar10--archResNet18--optimizerSFW--constraintk_sparse_constraints--lr1.0--lr_schemedynamic_change--momentum0.9--weight_decay0--k_sparseness10--k_frac0.05--tau15--modeinitialization--rescalegradient--sfw_init0--train_batchsize128--test_batchsize128--epoch_num180--color_channel3--gpu-1

The argument choices are parallel with those oftrain_prune.py. The log file is saved in/saved_logs/SFW_prune_test/.

Check DNN weight distribution

The following code checks out the weight distribution of the DNN.

python-utest_weight_distribution.py--datacifar10--archResNet18--optimizerSFW--constraintk_sparse_constraints--lr1.0--lr_schemedynamic_change--momentum0.9--weight_decay0--k_sparseness10--k_frac0.05--tau15--modeinitialization--rescalegradient--sfw_init0--train_batchsize128--test_batchsize128--epoch_num180--color_channel3--gpu-1

The argument choices are also parallel with those oftrain_prune.py. The log file is saved in/saved_logs/weight_distribution/.

Optional argument choices

Some optional argument choices are as follows.

optionalarguments:--datacifar10|cifar100|mnist|svhn|tiny--archResNet18|VGG16|Mlp--optimizerSFW|SGD--constraintk_sparse_constraints|l2_constraints|unconstraints--lr1.0 (floatbetween0and1)--lr_schemedynamic_change|decrease_3|keep--momentum0.9 (recommand)--weight_decay0 (recommand)--k_sparseness10 (equalstothenumberoflabels)--k_frac0.05|0.01|0.1--tau15|5|10|20--modeinitialization|diameter|radius|None--rescalegradient|diameter|None--sfw_init0|1--train_batchsize128--test_batchsize128--epoch_num180--color_channel3--gpu-1 (GPUidtouse)

If use the dataset 'Tiny-Imagenet', please download the dataset to/data/tiny_imagenet_200/.

Citation

TBD

About

[ICLR 2022] "Learning Pruning-Friendly Networks via Frank-Wolfe: One-Shot, Any-Sparsity, and No Retraining" by Lu Miao*, Xiaolong Luo*, Tianlong Chen, Wuyang Chen, Dong Liu, Zhangyang Wang

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages


[8]ページ先頭

©2009-2025 Movatter.jp