Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up

An MIT rewrite of YOLOv9

License

NotificationsYou must be signed in to change notification settings

VIAME/YOLO

 
 

Repository files navigation

Documentation StatusGitHub LicenseWIP

Developer Mode Build & TestDeploy Mode Validation & Inference

PWC

Open In ColabHugging Face Spaces

Welcome to the official implementation of YOLOv7 and YOLOv9. This repository will contains the complete codebase, pre-trained models, and detailed instructions for training and deploying YOLOv9.

TL;DR

  • This is the official YOLO model implementation with an MIT License.
  • For quick deployment: you can directly install by pip+git:
pip install git+https://github.com/WongKinYiu/YOLO.gityolo task.data.source=0# source could be a single file, video, image folder, webcam ID

Introduction

Installation

To get started using YOLOv9's developer mode, we recommand you clone this repository and install the required dependencies:

git clone git@github.com:WongKinYiu/YOLO.gitcd YOLOpip install -r requirements.txt

Features

Task

These are simple examples. For more customization details, please refer toNotebooks and lower-level modificationsHOWTO.

Training

To train YOLO on your machine/dataset:

  1. Modify the configuration fileyolo/config/dataset/**.yaml to point to your dataset.
  2. Run the training script:
python yolo/lazy.py task=train dataset=** use_wandb=Truepython yolo/lazy.py task=train task.data.batch_size=8 model=v9-c weight=False# or more args

Transfer Learning

To perform transfer learning with YOLOv9:

python yolo/lazy.py task=train task.data.batch_size=8 model=v9-c dataset={dataset_config} device={cpu, mps, cuda}

Inference

To use a model for object detection, use:

python yolo/lazy.py# if cloned from GitHubpython yolo/lazy.py task=inference\# default is inference                    name=AnyNameYouWant\# AnyNameYouWant                    device=cpu\# hardware cuda, cpu, mps                    model=v9-s\# model version: v9-c, m, s                    task.nms.min_confidence=0.1\# nms config                    task.fast_inference=onnx\# onnx, trt, deploy                    task.data.source=data/toy/images/train\# file, dir, webcam                    +quite=True\# Quite Outputyolo task.data.source={Any Source}# if pip installedyolo task=inference task.data.source={Any}

Validation

To validate model performance, or generate a json file in COCO format:

python yolo/lazy.py task=validationpython yolo/lazy.py task=validation dataset=toy

Contributing

Contributions to the YOLO project are welcome! SeeCONTRIBUTING for guidelines on how to contribute.

Star History

Star History Chart

Citations

@misc{wang2022yolov7,      title={YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors},      author={Chien-Yao Wang and Alexey Bochkovskiy and Hong-Yuan Mark Liao},      year={2022},      eprint={2207.02696},      archivePrefix={arXiv},      primaryClass={id='cs.CV' full_name='Computer Vision and Pattern Recognition' is_active=True alt_name=None in_archive='cs' is_general=False description='Covers image processing, computer vision, pattern recognition, and scene understanding. Roughly includes material in ACM Subject Classes I.2.10, I.4, and I.5.'}}@misc{wang2024yolov9,      title={YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information},      author={Chien-Yao Wang and I-Hau Yeh and Hong-Yuan Mark Liao},      year={2024},      eprint={2402.13616},      archivePrefix={arXiv},      primaryClass={cs.CV}}

About

An MIT rewrite of YOLOv9

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python94.8%
  • Shell4.3%
  • Dockerfile0.9%

[8]ページ先頭

©2009-2025 Movatter.jp