forked fromMultimediaTechLab/YOLO
- Notifications
You must be signed in to change notification settings - Fork0
VIAME/YOLO
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
Welcome to the official implementation of YOLOv7 and YOLOv9. This repository will contains the complete codebase, pre-trained models, and detailed instructions for training and deploying YOLOv9.
- This is the official YOLO model implementation with an MIT License.
- For quick deployment: you can directly install by pip+git:
pip install git+https://github.com/WongKinYiu/YOLO.gityolo task.data.source=0# source could be a single file, video, image folder, webcam ID
- YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information
- YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object Detectors
To get started using YOLOv9's developer mode, we recommand you clone this repository and install the required dependencies:
git clone git@github.com:WongKinYiu/YOLO.gitcd YOLOpip install -r requirements.txt
These are simple examples. For more customization details, please refer toNotebooks and lower-level modificationsHOWTO. To train YOLO on your machine/dataset:
python yolo/lazy.py task=train dataset=** use_wandb=Truepython yolo/lazy.py task=train task.data.batch_size=8 model=v9-c weight=False# or more args To perform transfer learning with YOLOv9: python yolo/lazy.py task=train task.data.batch_size=8 model=v9-c dataset={dataset_config} device={cpu, mps, cuda} To use a model for object detection, use: python yolo/lazy.py# if cloned from GitHubpython yolo/lazy.py task=inference\# default is inference name=AnyNameYouWant\# AnyNameYouWant device=cpu\# hardware cuda, cpu, mps model=v9-s\# model version: v9-c, m, s task.nms.min_confidence=0.1\# nms config task.fast_inference=onnx\# onnx, trt, deploy task.data.source=data/toy/images/train\# file, dir, webcam +quite=True\# Quite Outputyolo task.data.source={Any Source}# if pip installedyolo task=inference task.data.source={Any} To validate model performance, or generate a json file in COCO format: python yolo/lazy.py task=validationpython yolo/lazy.py task=validation dataset=toy Contributions to the YOLO project are welcome! SeeCONTRIBUTING for guidelines on how to contribute.
|