Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

coursera吴恩达机器学习课程作业自写Python版本+Matlab原版

NotificationsYou must be signed in to change notification settings

TingNie/Coursera-ML-using-matlab-python

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

37 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

coursera吴恩达机器学习课程作业自写Python2.7版本,使用jupyter notebook实现,使代码更有层次感,可读性强。

本repository实现算法包括如下:

线性回归: linear_regression.ipynb

多元线性回归:linear_multiple.ipynb

逻辑回归:logic_regression.ipynb

正则化用于逻辑回归: logic_regularization.ipynb

模型诊断+学习曲线: learnCurve.ipynb

一对多分类模型:oneVSall.ipynb

神经网络模型:neuralNetwork.ipynb

SVM分类器:svm.ipynb

kmeans聚类:kmeans.ipynb

pca降维:pca.ipynb

高斯分布用于异常检测:anomaly_detection.ipynb

协调过滤推荐算法:Collaborative_Filter.ipynb

PS:网上其他参考资料分享:

1.课程作业原版是MATLAB版本(填空式编码):对应 machine-learning-ex1——ex8 文件夹

2.kaleko整理的jupyter notebooks版本:对应 coursera_ml_ipynb 文件夹

3.mstampfer对照原版作业格式整理的Python版本,可以尝试自己实现

4.AceCoooool整理的Python版本,有中文注释

5.如果需要了解更多算法知识,本人使用jupyter notebook整理的peter的《机器学习实战》代码

6.本人自写的,关于吴恩达(Andrew Ng)开设的深度学习课程deeplearning.ai的课程答案

About

coursera吴恩达机器学习课程作业自写Python版本+Matlab原版

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

[8]ページ先頭

©2009-2025 Movatter.jp