Uh oh!
There was an error while loading.Please reload this page.
- Notifications
You must be signed in to change notification settings - Fork5.8k
Implemented FFT convolution and lazy segment tree — fast and efficient#1848
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to ourterms of service andprivacy statement. We’ll occasionally send you account related emails.
Already on GitHub?Sign in to your account
base:master
Are you sure you want to change the base?
Uh oh!
There was an error while loading.Please reload this page.
Changes fromall commits
File filter
Filter by extension
Conversations
Uh oh!
There was an error while loading.Please reload this page.
Jump to
Uh oh!
There was an error while loading.Please reload this page.
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,152 @@ | ||
| // Cooley–Tukey FFT (radix-2, iterative) and polynomial/big-integer multiplication | ||
| // Exports: fft, ifft, multiplyPolynomials, convolveReal, multiplyBigIntegers | ||
| function isPowerOfTwo(n) { | ||
| return n && (n & (n - 1)) === 0 | ||
| } | ||
| function nextPowerOfTwo(n) { | ||
| let p = 1 | ||
| while (p < n) p <<= 1 | ||
| return p | ||
| } | ||
| function bitReverse(n, bits) { | ||
| let rev = 0 | ||
| for (let i = 0; i < bits; i++) { | ||
| rev = (rev << 1) | (n & 1) | ||
| n >>= 1 | ||
| } | ||
| return rev | ||
| } | ||
| function fft(re, im, invert = false) { | ||
| const n = re.length | ||
| if (!isPowerOfTwo(n)) { | ||
| throw new Error('fft input length must be a power of two') | ||
| } | ||
| if (im.length !== n) throw new Error('re and im lengths must match') | ||
| // Bit-reverse permutation | ||
| const bits = Math.floor(Math.log2(n)) | ||
| for (let i = 0; i < n; i++) { | ||
| const j = bitReverse(i, bits) | ||
| if (i < j) { | ||
| ;[re[i], re[j]] = [re[j], re[i]] | ||
| ;[im[i], im[j]] = [im[j], im[i]] | ||
| } | ||
| } | ||
| // Iterative FFT | ||
| for (let len = 2; len <= n; len <<= 1) { | ||
| const ang = 2 * Math.PI / len * (invert ? 1 : -1) | ||
| const wLenRe = Math.cos(ang) | ||
| const wLenIm = Math.sin(ang) | ||
| for (let i = 0; i < n; i += len) { | ||
| let wRe = 1 | ||
| let wIm = 0 | ||
| for (let j = 0; j < len / 2; j++) { | ||
| const uRe = re[i + j] | ||
| const uIm = im[i + j] | ||
| const vRe = re[i + j + len / 2] | ||
| const vIm = im[i + j + len / 2] | ||
| // v * w | ||
| const tRe = vRe * wRe - vIm * wIm | ||
| const tIm = vRe * wIm + vIm * wRe | ||
| // butterfly | ||
| re[i + j] = uRe + tRe | ||
Check failure on line 60 in Maths/FFT.js
| ||
| im[i + j] = uIm + tIm | ||
| re[i + j + len / 2] = uRe - tRe | ||
Check failure on line 62 in Maths/FFT.js
| ||
| im[i + j + len / 2] = uIm - tIm | ||
| // w *= wLen | ||
| const nwRe = wRe * wLenRe - wIm * wLenIm | ||
| const nwIm = wRe * wLenIm + wIm * wLenRe | ||
| wRe = nwRe | ||
| wIm = nwIm | ||
| } | ||
| } | ||
| } | ||
| if (invert) { | ||
| for (let i = 0; i < n; i++) { | ||
| re[i] /= n | ||
| im[i] /= n | ||
| } | ||
| } | ||
| } | ||
| function ifft(re, im) { | ||
| fft(re, im, true) | ||
| } | ||
| function convolveReal(a, b) { | ||
| const need = a.length + b.length - 1 | ||
| const n = nextPowerOfTwo(need) | ||
| const reA = new Array(n).fill(0) | ||
| const imA = new Array(n).fill(0) | ||
| const reB = new Array(n).fill(0) | ||
| const imB = new Array(n).fill(0) | ||
| for (let i = 0; i < a.length; i++) reA[i] = a[i] | ||
| for (let i = 0; i < b.length; i++) reB[i] = b[i] | ||
| fft(reA, imA) | ||
| fft(reB, imB) | ||
| const re = new Array(n) | ||
| const im = new Array(n) | ||
| for (let i = 0; i < n; i++) { | ||
| // (reA + i imA) * (reB + i imB) | ||
| re[i] = reA[i] * reB[i] - imA[i] * imB[i] | ||
| im[i] = reA[i] * imB[i] + imA[i] * reB[i] | ||
| } | ||
| ifft(re, im) | ||
| const res = new Array(need) | ||
| for (let i = 0; i < need; i++) { | ||
| res[i] = Math.round(re[i]) // round to nearest integer to counter FP errors | ||
| } | ||
| return res | ||
| } | ||
| function multiplyPolynomials(a, b) { | ||
| return convolveReal(a, b) | ||
| } | ||
| function trimLSD(arr) { | ||
| // Remove trailing zeros in LSD-first arrays | ||
| let i = arr.length - 1 | ||
| while (i > 0 && arr[i] === 0) i-- | ||
| return arr.slice(0, i + 1) | ||
| } | ||
| function multiplyBigIntegers(A, B, base = 10) { | ||
| // A, B are LSD-first arrays of digits in given base | ||
| if (!Array.isArray(A) || !Array.isArray(B)) { | ||
| throw new Error('Inputs must be digit arrays') | ||
| } | ||
| const conv = convolveReal(A, B) | ||
| // Carry handling | ||
| const res = conv.slice() | ||
| let carry = 0 | ||
| for (let i = 0; i < res.length; i++) { | ||
| const total = res[i] + carry | ||
| res[i] = total % base | ||
| carry = Math.floor(total / base) | ||
| } | ||
| while (carry > 0) { | ||
| res.push(carry % base) | ||
| carry = Math.floor(carry / base) | ||
| } | ||
| const trimmed = trimLSD(res) | ||
| return trimmed.length === 0 ? [0] : trimmed | ||
| } | ||
| export { fft, ifft, convolveReal, multiplyPolynomials, multiplyBigIntegers } | ||
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,59 @@ | ||
| import { multiplyPolynomials, multiplyBigIntegers, convolveReal } from '../FFT' | ||
| describe('FFT polynomial multiplication', () => { | ||
| it('multiplies small polynomials', () => { | ||
| const a = [1, 2, 3] // 1 + 2x + 3x^2 | ||
| const b = [4, 5] // 4 + 5x | ||
| expect(multiplyPolynomials(a, b)).toEqual([4, 13, 22, 15]) | ||
| }) | ||
| it('convolution matches naive for random arrays', () => { | ||
| const a = [0, 1, 0, 2, 3] | ||
| const b = [1, 2, 3] | ||
| const conv = convolveReal(a, b) | ||
| const naive = [] | ||
| for (let i = 0; i < a.length + b.length - 1; i++) { | ||
| let sum = 0 | ||
| for (let j = 0; j < a.length; j++) { | ||
| const k = i - j | ||
| if (k >= 0 && k < b.length) sum += a[j] * b[k] | ||
| } | ||
| naive.push(sum) | ||
| } | ||
| expect(conv).toEqual(naive) | ||
| }) | ||
| }) | ||
| describe('FFT big integer multiplication', () => { | ||
| function digitsToBigInt(digs, base = 10) { | ||
| // LSD-first digits to BigInt | ||
| let s = '' | ||
| for (let i = digs.length - 1; i >= 0; i--) s += digs[i].toString(base) | ||
| return BigInt(s) | ||
| } | ||
| function bigIntToDigits(n, base = 10) { | ||
| if (n === 0n) return [0] | ||
| const digs = [] | ||
| const b = BigInt(base) | ||
| let x = n | ||
| while (x > 0n) { | ||
| digs.push(Number(x % b)) | ||
| x /= b | ||
| } | ||
| return digs | ||
| } | ||
| it('multiplies large integer arrays (base 10)', () => { | ||
| const A = Array.from({ length: 50 }, () => Math.floor(Math.random() * 10)) | ||
| const B = Array.from({ length: 50 }, () => Math.floor(Math.random() * 10)) | ||
| const prodDigits = multiplyBigIntegers(A, B, 10) | ||
| const prodBigInt = digitsToBigInt(A) * digitsToBigInt(B) | ||
| expect(prodDigits).toEqual(bigIntToDigits(prodBigInt)) | ||
| }) | ||
| it('handles leading zeros and zero cases', () => { | ||
| expect(multiplyBigIntegers([0], [0])).toEqual([0]) | ||
| expect(multiplyBigIntegers([0, 0, 1], [0, 2])).toEqual([0, 0, 0, 2]) | ||
| }) | ||
| }) |
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,102 @@ | ||
| // Suffix Automaton implementation for substring queries | ||
| // Provides: buildSuffixAutomaton, countDistinctSubstrings, longestCommonSubstring | ||
| class SAMState { | ||
| constructor() { | ||
| this.next = Object.create(null) | ||
| this.link = -1 | ||
| this.len = 0 | ||
| } | ||
| } | ||
| function buildSuffixAutomaton(s) { | ||
| const states = [new SAMState()] | ||
| let last = 0 | ||
| for (const ch of s) { | ||
| const cur = states.length | ||
| states.push(new SAMState()) | ||
| states[cur].len = states[last].len + 1 | ||
| let p = last | ||
| while (p !== -1 && states[p].next[ch] === undefined) { | ||
| states[p].next[ch] = cur | ||
| p = states[p].link | ||
| } | ||
| if (p === -1) { | ||
| states[cur].link = 0 | ||
| } else { | ||
| const q = states[p].next[ch] | ||
| if (states[p].len + 1 === states[q].len) { | ||
| states[cur].link = q | ||
| } else { | ||
| const clone = states.length | ||
| states.push(new SAMState()) | ||
| states[clone].len = states[p].len + 1 | ||
| states[clone].next = { ...states[q].next } | ||
| states[clone].link = states[q].link | ||
| while (p !== -1 && states[p].next[ch] === q) { | ||
| states[p].next[ch] = clone | ||
| p = states[p].link | ||
| } | ||
| states[q].link = states[cur].link = clone | ||
| } | ||
| } | ||
| last = cur | ||
| } | ||
| return { states, last } | ||
| } | ||
| function countDistinctSubstrings(s) { | ||
| const { states } = buildSuffixAutomaton(s) | ||
| let count = 0 | ||
| // State 0 is the initial state; skip it in the sum | ||
| for (let v = 1; v < states.length; v++) { | ||
| const link = states[v].link | ||
| const add = states[v].len - (link === -1 ? 0 : states[link].len) | ||
| count += add | ||
| } | ||
| return count | ||
| } | ||
| function longestCommonSubstring(a, b) { | ||
| // Build SAM of string a, then walk b to find LCS | ||
| const { states } = buildSuffixAutomaton(a) | ||
| let v = 0 | ||
| let l = 0 | ||
| let best = 0 | ||
| let bestEnd = -1 | ||
| for (let i = 0; i < b.length; i++) { | ||
| const ch = b[i] | ||
| if (states[v].next[ch] !== undefined) { | ||
| v = states[v].next[ch] | ||
| l++ | ||
| } else { | ||
| while (v !== -1 && states[v].next[ch] === undefined) { | ||
| v = states[v].link | ||
| } | ||
| if (v === -1) { | ||
| v = 0 | ||
| l = 0 | ||
| continue | ||
| } else { | ||
| l = states[v].len + 1 | ||
| v = states[v].next[ch] | ||
| } | ||
| } | ||
| if (l > best) { | ||
| best = l | ||
| bestEnd = i | ||
| } | ||
| } | ||
| if (best === 0) return '' | ||
| return b.slice(bestEnd - best + 1, bestEnd + 1) | ||
| } | ||
| export { buildSuffixAutomaton, countDistinctSubstrings, longestCommonSubstring } |
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,24 @@ | ||
| import { countDistinctSubstrings, longestCommonSubstring } from '../SuffixAutomaton' | ||
| describe('Suffix Automaton - distinct substrings', () => { | ||
| it('handles empty string', () => { | ||
| expect(countDistinctSubstrings('')).toBe(0) | ||
| }) | ||
| it('counts distinct substrings correctly', () => { | ||
| expect(countDistinctSubstrings('aaa')).toBe(3) | ||
| expect(countDistinctSubstrings('abc')).toBe(6) | ||
| expect(countDistinctSubstrings('ababa')).toBe(9) | ||
| }) | ||
| }) | ||
| describe('Suffix Automaton - longest common substring', () => { | ||
| it('finds LCS of two strings', () => { | ||
| expect(longestCommonSubstring('xabcdxyz', 'xyzabcd')).toBe('abcd') | ||
| expect(longestCommonSubstring('hello', 'yellow')).toBe('ello') | ||
| }) | ||
| it('returns empty when no common substring', () => { | ||
| expect(longestCommonSubstring('abc', 'def')).toBe('') | ||
| }) | ||
| }) |
Uh oh!
There was an error while loading.Please reload this page.
Uh oh!
There was an error while loading.Please reload this page.