Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit2320b46

Browse files
authored
Add BTree implementation (#6248)
1 parentd23a0ec commit2320b46

File tree

2 files changed

+417
-0
lines changed
  • src
    • main/java/com/thealgorithms/datastructures/trees
    • test/java/com/thealgorithms/datastructures/trees

2 files changed

+417
-0
lines changed
Lines changed: 323 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,323 @@
1+
packagecom.thealgorithms.datastructures.trees;
2+
3+
importjava.util.ArrayList;
4+
5+
/**
6+
* Implementation of a B-Tree, a self-balancing tree data structure that maintains sorted data
7+
* and allows searches, sequential access, insertions, and deletions in logarithmic time.
8+
*
9+
* B-Trees are generalizations of binary search trees in that a node can have more than two children.
10+
* They're widely used in databases and file systems.
11+
*
12+
* For more information: https://en.wikipedia.org/wiki/B-tree
13+
*/
14+
15+
publicclassBTree {
16+
staticclassBTreeNode {
17+
int[]keys;
18+
intt;// Minimum degree (defines range for number of keys)
19+
BTreeNode[]children;
20+
intn;// Current number of keys
21+
booleanleaf;
22+
23+
BTreeNode(intt,booleanleaf) {
24+
this.t =t;
25+
this.leaf =leaf;
26+
this.keys =newint[2 *t -1];
27+
this.children =newBTreeNode[2 *t];
28+
this.n =0;
29+
}
30+
31+
voidtraverse(ArrayList<Integer>result) {
32+
for (inti =0;i <n;i++) {
33+
if (!leaf) {
34+
children[i].traverse(result);
35+
}
36+
result.add(keys[i]);
37+
}
38+
if (!leaf) {
39+
children[n].traverse(result);
40+
}
41+
}
42+
43+
BTreeNodesearch(intkey) {
44+
inti =0;
45+
while (i <n &&key >keys[i]) {
46+
i++;
47+
}
48+
if (i <n &&keys[i] ==key) {
49+
returnthis;
50+
}
51+
if (leaf) {
52+
returnnull;
53+
}
54+
returnchildren[i].search(key);
55+
}
56+
57+
voidinsertNonFull(intkey) {
58+
inti =n -1;
59+
if (leaf) {
60+
while (i >=0 &&keys[i] >key) {
61+
keys[i +1] =keys[i];
62+
i--;
63+
}
64+
keys[i +1] =key;
65+
n++;
66+
}else {
67+
while (i >=0 &&keys[i] >key) {
68+
i--;
69+
}
70+
if (children[i +1].n ==2 *t -1) {
71+
splitChild(i +1,children[i +1]);
72+
if (keys[i +1] <key) {
73+
i++;
74+
}
75+
}
76+
children[i +1].insertNonFull(key);
77+
}
78+
}
79+
80+
voidsplitChild(inti,BTreeNodey) {
81+
BTreeNodez =newBTreeNode(y.t,y.leaf);
82+
z.n =t -1;
83+
84+
System.arraycopy(y.keys,t,z.keys,0,t -1);
85+
if (!y.leaf) {
86+
System.arraycopy(y.children,t,z.children,0,t);
87+
}
88+
y.n =t -1;
89+
90+
for (intj =n;j >=i +1;j--) {
91+
children[j +1] =children[j];
92+
}
93+
children[i +1] =z;
94+
95+
for (intj =n -1;j >=i;j--) {
96+
keys[j +1] =keys[j];
97+
}
98+
keys[i] =y.keys[t -1];
99+
n++;
100+
}
101+
102+
voidremove(intkey) {
103+
intidx =findKey(key);
104+
105+
if (idx <n &&keys[idx] ==key) {
106+
if (leaf) {
107+
removeFromLeaf(idx);
108+
}else {
109+
removeFromNonLeaf(idx);
110+
}
111+
}else {
112+
if (leaf) {
113+
return;// Key not found
114+
}
115+
116+
booleanflag =idx ==n;
117+
if (children[idx].n <t) {
118+
fill(idx);
119+
}
120+
121+
if (flag &&idx >n) {
122+
children[idx -1].remove(key);
123+
}else {
124+
children[idx].remove(key);
125+
}
126+
}
127+
}
128+
129+
privateintfindKey(intkey) {
130+
intidx =0;
131+
while (idx <n &&keys[idx] <key) {
132+
++idx;
133+
}
134+
returnidx;
135+
}
136+
137+
privatevoidremoveFromLeaf(intidx) {
138+
for (inti =idx +1;i <n; ++i) {
139+
keys[i -1] =keys[i];
140+
}
141+
n--;
142+
}
143+
144+
privatevoidremoveFromNonLeaf(intidx) {
145+
intkey =keys[idx];
146+
if (children[idx].n >=t) {
147+
intpred =getPredecessor(idx);
148+
keys[idx] =pred;
149+
children[idx].remove(pred);
150+
}elseif (children[idx +1].n >=t) {
151+
intsucc =getSuccessor(idx);
152+
keys[idx] =succ;
153+
children[idx +1].remove(succ);
154+
}else {
155+
merge(idx);
156+
children[idx].remove(key);
157+
}
158+
}
159+
160+
privateintgetPredecessor(intidx) {
161+
BTreeNodecur =children[idx];
162+
while (!cur.leaf) {
163+
cur =cur.children[cur.n];
164+
}
165+
returncur.keys[cur.n -1];
166+
}
167+
168+
privateintgetSuccessor(intidx) {
169+
BTreeNodecur =children[idx +1];
170+
while (!cur.leaf) {
171+
cur =cur.children[0];
172+
}
173+
returncur.keys[0];
174+
}
175+
176+
privatevoidfill(intidx) {
177+
if (idx !=0 &&children[idx -1].n >=t) {
178+
borrowFromPrev(idx);
179+
}elseif (idx !=n &&children[idx +1].n >=t) {
180+
borrowFromNext(idx);
181+
}else {
182+
if (idx !=n) {
183+
merge(idx);
184+
}else {
185+
merge(idx -1);
186+
}
187+
}
188+
}
189+
190+
privatevoidborrowFromPrev(intidx) {
191+
BTreeNodechild =children[idx];
192+
BTreeNodesibling =children[idx -1];
193+
194+
for (inti =child.n -1;i >=0; --i) {
195+
child.keys[i +1] =child.keys[i];
196+
}
197+
198+
if (!child.leaf) {
199+
for (inti =child.n;i >=0; --i) {
200+
child.children[i +1] =child.children[i];
201+
}
202+
}
203+
204+
child.keys[0] =keys[idx -1];
205+
206+
if (!child.leaf) {
207+
child.children[0] =sibling.children[sibling.n];
208+
}
209+
210+
keys[idx -1] =sibling.keys[sibling.n -1];
211+
212+
child.n +=1;
213+
sibling.n -=1;
214+
}
215+
216+
privatevoidborrowFromNext(intidx) {
217+
BTreeNodechild =children[idx];
218+
BTreeNodesibling =children[idx +1];
219+
220+
child.keys[child.n] =keys[idx];
221+
222+
if (!child.leaf) {
223+
child.children[child.n +1] =sibling.children[0];
224+
}
225+
226+
keys[idx] =sibling.keys[0];
227+
228+
for (inti =1;i <sibling.n; ++i) {
229+
sibling.keys[i -1] =sibling.keys[i];
230+
}
231+
232+
if (!sibling.leaf) {
233+
for (inti =1;i <=sibling.n; ++i) {
234+
sibling.children[i -1] =sibling.children[i];
235+
}
236+
}
237+
238+
child.n +=1;
239+
sibling.n -=1;
240+
}
241+
242+
privatevoidmerge(intidx) {
243+
BTreeNodechild =children[idx];
244+
BTreeNodesibling =children[idx +1];
245+
246+
child.keys[t -1] =keys[idx];
247+
248+
for (inti =0;i <sibling.n; ++i) {
249+
child.keys[i +t] =sibling.keys[i];
250+
}
251+
252+
if (!child.leaf) {
253+
for (inti =0;i <=sibling.n; ++i) {
254+
child.children[i +t] =sibling.children[i];
255+
}
256+
}
257+
258+
for (inti =idx +1;i <n; ++i) {
259+
keys[i -1] =keys[i];
260+
}
261+
262+
for (inti =idx +2;i <=n; ++i) {
263+
children[i -1] =children[i];
264+
}
265+
266+
child.n +=sibling.n +1;
267+
n--;
268+
}
269+
}
270+
271+
privateBTreeNoderoot;
272+
privatefinalintt;
273+
274+
publicBTree(intt) {
275+
this.root =null;
276+
this.t =t;
277+
}
278+
279+
publicvoidtraverse(ArrayList<Integer>result) {
280+
if (root !=null) {
281+
root.traverse(result);
282+
}
283+
}
284+
285+
publicbooleansearch(intkey) {
286+
returnroot !=null &&root.search(key) !=null;
287+
}
288+
289+
publicvoidinsert(intkey) {
290+
if (search(key)) {
291+
return;
292+
}
293+
if (root ==null) {
294+
root =newBTreeNode(t,true);
295+
root.keys[0] =key;
296+
root.n =1;
297+
}else {
298+
if (root.n ==2 *t -1) {
299+
BTreeNodes =newBTreeNode(t,false);
300+
s.children[0] =root;
301+
s.splitChild(0,root);
302+
inti =0;
303+
if (s.keys[0] <key) {
304+
i++;
305+
}
306+
s.children[i].insertNonFull(key);
307+
root =s;
308+
}else {
309+
root.insertNonFull(key);
310+
}
311+
}
312+
}
313+
314+
publicvoiddelete(intkey) {
315+
if (root ==null) {
316+
return;
317+
}
318+
root.remove(key);
319+
if (root.n ==0) {
320+
root =root.leaf ?null :root.children[0];
321+
}
322+
}
323+
}

0 commit comments

Comments
 (0)

[8]ページ先頭

©2009-2025 Movatter.jp