Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Use the Tensorflow Object Detection API with Tensorflow 2

License

NotificationsYou must be signed in to change notification settings

TannerGilbert/Tensorflow-Object-Detection-with-Tensorflow-2.0

Repository files navigation

Duckies detection

In this repository you can find some examples on how to use the Tensorflow OD API with Tensorflow 2. For more information check out my articles:

Installation

You can install the TensorFlow Object Detection API either with Python Package Installer (pip) orDocker, an open-source platform for deploying and managing containerized applications.

First clone the master branch of the Tensorflow Models repository:

git clone https://github.com/tensorflow/models.git

Docker Installation

# From the root of the git repository (inside the models directory)docker build -f research/object_detection/dockerfiles/tf2/Dockerfile -t od .docker run -it od

Python Package Installation

cd models/research# Compile protos.protoc object_detection/protos/*.proto --python_out=.# Install TensorFlow Object Detection API.cp object_detection/packages/tf2/setup.py .python -m pip install .

Note: The *.proto designating all files does not work protobuf version 3.5 and higher. If you are using version 3.5, you have to go through each file individually. To make this easier, I created a python script that loops through a directory and converts all proto files one at a time.

importosimportsysargs=sys.argvdirectory=args[1]protoc_path=args[2]forfileinos.listdir(directory):iffile.endswith(".proto"):os.system(protoc_path+" "+directory+"/"+file+" --python_out=.")
python use_protobuf.py <path to directory> <path to protoc file>

To test the installation run:

# Test the installation.python object_detection/builders/model_builder_tf2_test.py

If everything installed correctly you should see something like:

...[       OK ] ModelBuilderTF2Test.test_create_ssd_models_from_config[ RUN      ] ModelBuilderTF2Test.test_invalid_faster_rcnn_batchnorm_update[       OK ] ModelBuilderTF2Test.test_invalid_faster_rcnn_batchnorm_update[ RUN      ] ModelBuilderTF2Test.test_invalid_first_stage_nms_iou_threshold[       OK ] ModelBuilderTF2Test.test_invalid_first_stage_nms_iou_threshold[ RUN      ] ModelBuilderTF2Test.test_invalid_model_config_proto[       OK ] ModelBuilderTF2Test.test_invalid_model_config_proto[ RUN      ] ModelBuilderTF2Test.test_invalid_second_stage_batch_size[       OK ] ModelBuilderTF2Test.test_invalid_second_stage_batch_size[ RUN      ] ModelBuilderTF2Test.test_session[  SKIPPED ] ModelBuilderTF2Test.test_session[ RUN      ] ModelBuilderTF2Test.test_unknown_faster_rcnn_feature_extractor[       OK ] ModelBuilderTF2Test.test_unknown_faster_rcnn_feature_extractor[ RUN      ] ModelBuilderTF2Test.test_unknown_meta_architecture[       OK ] ModelBuilderTF2Test.test_unknown_meta_architecture[ RUN      ] ModelBuilderTF2Test.test_unknown_ssd_feature_extractor[       OK ] ModelBuilderTF2Test.test_unknown_ssd_feature_extractor----------------------------------------------------------------------Ran 20 tests in 91.767sOK (skipped=1)

Running a pre-trained model

Theobject_detection_tutorial.ipynb notebook walks you through the process of using a pre-trained model to detect objects in an image. To try it out, I recommend to run it insideGoogle Colab.

Person and Kites detection

Modify code to run on a video stream

The above example can be easily rewritten to work with video streams by replacing the show_inference method with:

importcv2cap=cv2.VideoCapture(0)# or cap = cv2.VideoCapture("<video-path>")defrun_inference(model,cap):whilecap.isOpened():ret,image_np=cap.read()# Actual detection.output_dict=run_inference_for_single_image(model,image_np)# Visualization of the results of a detection.vis_util.visualize_boxes_and_labels_on_image_array(image_np,output_dict['detection_boxes'],output_dict['detection_classes'],output_dict['detection_scores'],category_index,instance_masks=output_dict.get('detection_masks_reframed',None),use_normalized_coordinates=True,line_thickness=8)cv2.imshow('object_detection',cv2.resize(image_np, (800,600)))ifcv2.waitKey(25)&0xFF==ord('q'):cap.release()cv2.destroyAllWindows()breakrun_inference(detection_model,cap)

Live Object Detection Example

You can find the code as anotebook orpython file.

Few-shot learning

The new release also comes withanother notebook showing us how to fine-tune a RetinaNet pre-trained model to detect rubber duckies with only 5 images and <5 minutes of training time in Google Colab.

Duckies detection

Author

Gilbert Tanner

Sponsor this project

  •  

[8]ページ先頭

©2009-2025 Movatter.jp