Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up

A modern C++ header only cdf library with Python bindings

License

NotificationsYou must be signed in to change notification settings

SciQLop/CDFpp

Repository files navigation

GitHub LicenseDocumentation StatusCPP17PyPiCoverageDiscover on MyBinder

Python packages

Linux x86_64Windows x86_64MacOs x86_64MacOs ARM64
linux_x86_64windows_x86_64macos_x86_64macos_arm64

Unit Tests

Linux x86_64Windows x86_64MacOs x86_64
linux_x86_64windows_x86_64macos_x86_64

CDFpp (CDF++)

A NASA'sCDF modern C++ library.This is not a C++ wrapper but a full C++ implementation.Why? CDF files are still used for space physics missions but few implementations are available.The main one is NASA's C implementation availablehere but it lacks multi-threads support (global shared state), has an old C interface and has a license which isn't compatible with most Linux distributions policy.There are also Java and Python implementations which are not usable in C++.

List of features and roadmap:

  • CDF reading
    • read files from cdf version 2.2 to 3.x
    • read uncompressed file headers
    • read uncompressed attributes
    • read uncompressed variables
    • read variable attributes
    • loads cdf files from memory (std::vector or char*)
    • handles both row and column major files
    • read variables with nested VXRs
    • read compressed files (GZip, RLE)
    • read compressed variables (GZip, RLE)
    • read UTF-8 encoded files
    • read ISO 8859-1(Latin-1) encoded files (converts to UTF-8 on the fly)
    • variables values lazy loading
    • decode DEC's floating point encoding (Itanium, ALPHA and VAX)
    • pad values
  • CDF writing
    • write uncompressed headers
    • write uncompressed attributes
    • write uncompressed variables
    • write compressed variables
    • write compressed files
    • pad values
  • General features
    • useslibdeflate for faster GZip decompression
    • highly optimized CDF reads (up to ~4GB/s read speed from disk)
    • handle leap seconds
    • Python wrappers
    • Documentation
    • Examples (see below)
    • Benchmarks

If you want to understand how it works, how to use the code or what works, you may have to read tests.

Installing

From PyPi

python3 -m pip install --user pycdfpp

From sources

meson buildcd buildninjasudo ninja install

Or if youl want to build a Python wheel:

python -m build.# resulting wheel will be located into dist folder

Basic usage

Python

Reading CDF files

Basic example from a local file:

importpycdfppcdf=pycdfpp.load("some_cdf.cdf")cdf_var_data=cdf["var_name"].values#builds a numpy view or a list of stringsattribute_name_first_value=cdf.attributes['attribute_name'][0]

Note that you can also load in memory files:

importpycdfppimportrequestsimportmatplotlib.pyplotasplttha_l2_fgm=pycdfpp.load(requests.get("https://spdf.gsfc.nasa.gov/pub/data/themis/tha/l2/fgm/2016/tha_l2_fgm_20160101_v01.cdf").content)plt.plot(tha_l2_fgm["tha_fgl_gsm"])plt.show()

Buffer protocol support:

importpycdfppimportrequestsimportxarrayasxrimportmatplotlib.pyplotasplttha_l2_fgm=pycdfpp.load(requests.get("https://spdf.gsfc.nasa.gov/pub/data/themis/tha/l2/fgm/2016/tha_l2_fgm_20160101_v01.cdf").content)xr.DataArray(tha_l2_fgm['tha_fgl_gsm'],dims=['time','components'],coords={'time':tha_l2_fgm['tha_fgl_time'].values,'components':['x','y','z']}).plot.line(x='time')plt.show()# Works with matplotlib directly tooplt.plot(tha_l2_fgm['tha_fgl_time'],tha_l2_fgm['tha_fgl_gsm'])plt.show()

Datetimes handling:

importpycdfppimportos# Due to an issue with pybind11 you have to force your timezone to UTC for# datetime conversion (not necessary for numpy datetime64)os.environ['TZ']='UTC'mms2_fgm_srvy=pycdfpp.load("mms2_fgm_srvy_l2_20200201_v5.230.0.cdf")# to convert any CDF variable holding any time type to python datetime:epoch_dt=pycdfpp.to_datetime(mms2_fgm_srvy["Epoch"])# same with numpy datetime64:epoch_dt64=pycdfpp.to_datetime64(mms2_fgm_srvy["Epoch"])# note that using datetime64 is ~100x faster than datetime (~2ns/element on an average laptop)

Writing CDF files

Creating a basic CDF file:

importpycdfppimportnumpyasnpfromdatetimeimportdatetimecdf=pycdfpp.CDF()cdf.add_attribute("some attribute", [[1,2,3], [datetime(2018,1,1),datetime(2018,1,2)],"hello\nworld"])cdf.add_variable(f"some variable",values=np.ones((10),dtype=np.float64))pycdfpp.save(cdf,"some_cdf.cdf")

C++

#include"cdf-io/cdf-io.hpp"#include<iostream>std::ostream&operator<<(std::ostream& os,const cdf::Variable::shape_t& shape){    os <<"(";for (auto i =0; i <static_cast<int>(std::size(shape)) -1; i++)        os << shape[i] <<',';if (std::size(shape) >=1)        os << shape[std::size(shape) -1];    os <<")";return os;}intmain(int argc,char** argv){auto path =std::string(DATA_PATH) +"/a_cdf.cdf";// cdf::io::load returns a optional<CDF>if (constauto my_cdf =cdf::io::load(path); my_cdf)    {        std::cout <<"Attribute list:" << std::endl;for (constauto& [name, attribute] : my_cdf->attributes)        {            std::cout <<"\t" << name << std::endl;        }        std::cout <<"Variable list:" << std::endl;for (constauto& [name, variable] : my_cdf->variables)        {            std::cout <<"\t" << name <<" shape:" << variable.shape() << std::endl;        }return0;    }return -1;}

caveats

  • NRV variables shape, in order to expose a consistent shape, PyCDFpp exposes the reccord count as first dimension and thus its value will be either 0 or 1 (0 mean empty variable).

[8]ページ先頭

©2009-2025 Movatter.jp