Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up

Qengineering/YoloV8-NPU

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

output image

YoloV8 for RK3566/68/88 NPU (Rock 5, Orange Pi 5, Radxa Zero 3).

License

Special made for the NPU, seeQ-engineering deep learning examples


Model performance benchmark (FPS)

All models, with C++ examples can be found on the SD images.

output imageRock 5 withUbuntu 22.04, OpenCV, ncnn andNPU

output imageRadxa Zero 3 withUbuntu 22.04, OpenCV, ncnn andNPU

All models are quantized toint8, unless otherwise noted.

demomodel_nameRK3588RK3566/68
yolov5yolov5s_relu50.014.8
yolov5n58.819.5
yolov5s37.711.7
yolov5m16.25.7
yolov6yolov6n63.018.0
yolov6s29.58.1
yolov6m15.44.5
yolov7yolov7-tiny53.416.1
yolov79.43.4
yolov8yolov8n53.118.2
yolov8s28.58.9
yolov8m12.14.4
yolov10yolov10n35.112.5
yolov8s23.47.3
yolov8m9.73.4
yolov8x5.11.8
yoloxyolox_s30.010.0
yolox_m12.94.8
ppyoloeppyoloe_s28.89.2
ppyoloe_m13.15.04
yolov5_segyolov5n-seg9.41.04
yolov5s-seg7.80.87
yolov5m-seg6.10.71
yolov8_segyolov8n-seg8.90.91
yolov8s-seg7.30.87
yolov8m-seg4.50.7
ppsegppseg_lite_1024x51227.52.4
RetinaFaceRetinaFace_mobile3201243.688.5
RetinaFace_resnet50_320143.411.8
PPOCR-Detppocrv4_det231.515.1
PPOCR-Recppocrv4_rec335.717.3

1 Input size 320x320
2 Input size 480x480
3 Input size 48x320, FP16

  • Due to the pixel-wise filling and drawing, segmentation models are relatively slow

Dependencies.

To run the application, you have to:

  • OpenCV 64-bit installed.
  • Optional: Code::Blocks. ($ sudo apt-get install codeblocks)

Installing the dependencies.

Start with the usual

$ sudo apt-get update $ sudo apt-get upgrade$ sudo apt-get install cmake wget curl

OpenCV

Follow the Raspberry Pi 4guide.

RKNPU2

$ git clone https://github.com/airockchip/rknn-toolkit2.git

We only use a few files.

rknn-toolkit2-master│      └── rknpu2    │          └── runtime        │               └── Linux            │                  └── librknn_api                ├── aarch64                │   └── librknnrt.so                └── include                    ├── rknn_api.h                    ├── rknn_custom_op.h                    └── rknn_matmul_api.h$ cd ~/rknn-toolkit2-master/rknpu2/runtime/Linux/librknn_api/aarch64$ sudo cp ./librknnrt.so /usr/local/lib$ cd ~/rknn-toolkit2-master/rknpu2/runtime/Linux/librknn_api/include$ sudo cp ./rknn_* /usr/local/include

Save 2 GB of disk space by removing the toolkit. We do not need it anymore.

$ cd ~$ sudo rm -rf ./rknn-toolkit2-master

Installing the app.

To extract and run the network in Code::Blocks

$ mkdir *MyDir* <br/>$ cd *MyDir* <br/>$ git clone https://github.com/Qengineering/YoloV8-NPU.git <br/>

Running the app.

You can useCode::Blocks.

  • Load the project file *.cbp in Code::Blocks.
  • SelectRelease, not Debug.
  • Compile and run with F9.
  • You can alter command line arguments withProject -> Set programs arguments...

Or useCmake.

$ cd *MyDir*$ mkdir build$ cd build$ cmake ..$ make -j4

Make sure you use the model fitting your system.

More info or if you want to connect a camera to the app, follow the instructions atHands-On.

output image


paypal


[8]ページ先頭

©2009-2025 Movatter.jp