- Notifications
You must be signed in to change notification settings - Fork2.4k
Chat with your documents on your local device using GPT models. No data leaves your device and 100% private.
PromtEngineer/localGPT
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
LocalGPT is afully private, on-premise Document Intelligence platform. Ask questions, summarise, and uncover insights from your files with state-of-the-art AI—no data ever leaves your machine.
More than a traditional RAG (Retrieval-Augmented Generation) tool, LocalGPT features ahybrid search engine that blends semantic similarity, keyword matching, andLate Chunking for long-context precision. Asmart router automatically selects between RAG and direct LLM answering for every query, whilecontextual enrichment and sentence-levelContext Pruning surface only the most relevant content. An independentverification pass adds an extra layer of accuracy.
The architecture ismodular and lightweight—enable only the components you need. With a pure-Python core and minimal dependencies, LocalGPT is simple to deploy, run, and maintain on any infrastructure.The system has minimal dependencies on frameworks and libraries, making it easy to deploy and maintain. The RAG system is pure python and does not require any additional dependencies.
Watch thisvideo to get started with LocalGPT.
Home | Create Index | Chat |
---|---|---|
![]() | ![]() | ![]() |
- Utmost Privacy: Your data remains on your computer, ensuring 100% security.
- Versatile Model Support: Seamlessly integrate a variety of open-source models via Ollama.
- Diverse Embeddings: Choose from a range of open-source embeddings.
- Reuse Your LLM: Once downloaded, reuse your LLM without the need for repeated downloads.
- Chat History: Remembers your previous conversations (in a session).
- API: LocalGPT has an API that you can use for building RAG Applications.
- GPU, CPU, HPU & MPS Support: Supports multiple platforms out of the box, Chat with your data using
CUDA
,CPU
,HPU (Intel® Gaudi®)
orMPS
and more!
- Multi-format Support: PDF, DOCX, TXT, Markdown, and more (Currently only PDF is supported)
- Contextual Enrichment: Enhanced document understanding with AI-generated context, inspired byContextual Retrieval
- Batch Processing: Handle multiple documents simultaneously
- Natural Language Queries: Ask questions in plain English
- Source Attribution: Every answer includes document references
- Smart Routing: Automatically chooses between RAG and direct LLM responses
- Query Decomposition: Breaks complex queries into sub-questions for better answers
- Semantic Caching: TTL-based caching with similarity matching for faster responses
- Session-Aware History: Maintains conversation context across interactions
- Answer Verification: Independent verification pass for accuracy
- Multiple AI Models: Ollama for inference, HuggingFace for embeddings and reranking
- RESTful APIs: Complete API access for integration
- Real-time Progress: Live updates during document processing
- Flexible Configuration: Customize models, chunk sizes, and search parameters
- Extensible Architecture: Plugin system for custom components
- Intuitive Web UI: Clean, responsive design
- Session Management: Organize conversations by topic
- Index Management: Easy document collection management
- Real-time Chat: Streaming responses for immediate feedback
Note: The installation is currently only tested on macOS.
- Python 3.8 or higher (tested with Python 3.11.5)
- Node.js 16+ and npm (tested with Node.js 23.10.0, npm 10.9.2)
- Docker (optional, for containerized deployment)
- 8GB+ RAM (16GB+ recommended)
- Ollama (required for both deployment approaches)
Before this brach is moved to the main branch, please clone this branch for instalation:
git clone -b localgpt-v2 https://github.com/PromtEngineer/localGPT.gitcd localGPT
# Clone the repositorygit clone https://github.com/PromtEngineer/localGPT.gitcd localGPT# Install Ollama locally (required even for Docker)curl -fsSL https://ollama.ai/install.sh| shollama pull qwen3:0.6bollama pull qwen3:8b# Start Ollamaollama serve# Start with Docker (in a new terminal)./start-docker.sh# Access the applicationopen http://localhost:3000
Docker Management Commands:
# Check container statusdocker compose ps# View logsdocker compose logs -f# Stop containers./start-docker.sh stop
# Clone the repositorygit clone https://github.com/PromtEngineer/localGPT.gitcd localGPT# Install Python dependenciespip install -r requirements.txt# Key dependencies installed:# - torch==2.4.1, transformers==4.51.0 (AI models)# - lancedb (vector database)# - rank_bm25, fuzzywuzzy (search algorithms)# - sentence_transformers, rerankers (embedding/reranking)# - docling (document processing)# - colpali-engine (multimodal processing - support coming soon)# Install Node.js dependenciesnpm install# Install and start Ollamacurl -fsSL https://ollama.ai/install.sh| shollama pull qwen3:0.6bollama pull qwen3:8bollama serve# Start the system (in a new terminal)python run_system.py# Access the applicationopen http://localhost:3000
System Management:
# Check system health (comprehensive diagnostics)python system_health_check.py# Check service status and healthpython run_system.py --health# Start in production modepython run_system.py --mode prod# Skip frontend (backend + RAG API only)python run_system.py --no-frontend# View aggregated logspython run_system.py --logs-only# Stop all servicespython run_system.py --stop# Or press Ctrl+C in the terminal running python run_system.py
Service Architecture:Therun_system.py
launcher manages four key services:
- Ollama Server (port 11434): AI model serving
- RAG API Server (port 8001): Document processing and retrieval
- Backend Server (port 8000): Session management and API endpoints
- Frontend Server (port 3000): React/Next.js web interface
# Terminal 1: Start Ollamaollama serve# Terminal 2: Start RAG APIpython -m rag_system.api_server# Terminal 3: Start Backendcd backend&& python server.py# Terminal 4: Start Frontendnpm run dev# Access at http://localhost:3000
Ubuntu/Debian:
sudo apt updatesudo apt install python3.8 python3-pip nodejs npm docker.io docker-compose
macOS:
brew install python@3.8 node npm docker docker-compose
Windows:
# Install Python 3.8+, Node.js, and Docker Desktop# Then use PowerShell or WSL2
Install Ollama (Recommended):
# Install Ollamacurl -fsSL https://ollama.ai/install.sh| sh# Pull recommended modelsollama pull qwen3:0.6b# Fast generation modelollama pull qwen3:8b# High-quality generation model
# Copy environment templatecp .env.example .env# Edit configurationnano .env
Key Configuration Options:
# AI Models (referenced in rag_system/main.py)OLLAMA_HOST=http://localhost:11434# Database Paths (used by backend and RAG system)DATABASE_PATH=./backend/chat_data.dbVECTOR_DB_PATH=./lancedb# Server Settings (used by run_system.py)BACKEND_PORT=8000FRONTEND_PORT=3000RAG_API_PORT=8001# Optional: Override default modelsGENERATION_MODEL=qwen3:8bENRICHMENT_MODEL=qwen3:0.6bEMBEDDING_MODEL=Qwen/Qwen3-Embedding-0.6BRERANKER_MODEL=answerdotai/answerai-colbert-small-v1
# Run system health checkpython system_health_check.py# Initialize databasespython -c"from backend.database import ChatDatabase; ChatDatabase().init_database()"# Test installationpython -c"from rag_system.main import get_agent; print('✅ Installation successful!')"# Validate complete setuppython run_system.py --health
Anindex is a collection of processed documents that you can chat with.
- Openhttp://localhost:3000
- Click "Create New Index"
- Upload your documents (PDF, DOCX, TXT)
- Configure processing options
- Click "Build Index"
# Simple script approach./simple_create_index.sh"My Documents""path/to/document.pdf"# Interactive scriptpython create_index_script.py
# Create indexcurl -X POST http://localhost:8000/indexes \ -H"Content-Type: application/json" \ -d'{"name": "My Index", "description": "My documents"}'# Upload documentscurl -X POST http://localhost:8000/indexes/INDEX_ID/upload \ -F"files=@document.pdf"# Build indexcurl -X POST http://localhost:8000/indexes/INDEX_ID/build
Once your index is built:
- Create a Chat Session: Click "New Chat" or use an existing session
- Select Your Index: Choose which document collection to query
- Ask Questions: Type natural language questions about your documents
- Get Answers: Receive AI-generated responses with source citations
# Use different models for different taskscurl -X POST http://localhost:8000/sessions \ -H"Content-Type: application/json" \ -d'{ "title": "High Quality Session", "model": "qwen3:8b", "embedding_model": "Qwen/Qwen3-Embedding-4B" }'
# Process multiple documents at oncepython demo_batch_indexing.py --config batch_indexing_config.json
importrequests# Chat with your documents via APIresponse=requests.post('http://localhost:8000/chat',json={'query':'What are the key findings in the research papers?','session_id':'your-session-id','search_type':'hybrid','retrieval_k':20})print(response.json()['response'])
LocalGPT supports multiple AI model providers with centralized configuration:
OLLAMA_CONFIG= {"host":"http://localhost:11434","generation_model":"qwen3:8b",# Main text generation"enrichment_model":"qwen3:0.6b"# Lightweight routing/enrichment}
EXTERNAL_MODELS= {"embedding_model":"Qwen/Qwen3-Embedding-0.6B",# 1024 dimensions"reranker_model":"answerdotai/answerai-colbert-small-v1",# ColBERT reranker"fallback_reranker":"BAAI/bge-reranker-base"# Backup reranker}
LocalGPT offers two main pipeline configurations:
"default": {"description":"Production-ready pipeline with hybrid search, AI reranking, and verification","storage": {"lancedb_uri":"./lancedb","text_table_name":"text_pages_v3","bm25_path":"./index_store/bm25" },"retrieval": {"retriever":"multivector","search_type":"hybrid","late_chunking": {"enabled":True},"dense": {"enabled":True,"weight":0.7},"bm25": {"enabled":True} },"reranker": {"enabled":True,"type":"ai","strategy":"rerankers-lib","model_name":"answerdotai/answerai-colbert-small-v1","top_k":10 },"query_decomposition": {"enabled":True,"max_sub_queries":3},"verification": {"enabled":True},"retrieval_k":20,"contextual_enricher": {"enabled":True,"window_size":1}}
"fast": {"description":"Speed-optimized pipeline with minimal overhead","retrieval": {"search_type":"vector_only","late_chunking": {"enabled":False} },"reranker": {"enabled":False},"query_decomposition": {"enabled":False},"verification": {"enabled":False},"retrieval_k":10,"contextual_enricher": {"enabled":False}}
SEARCH_CONFIG= {'hybrid': {'dense_weight':0.7,'sparse_weight':0.3,'retrieval_k':20,'reranker_top_k':10 }}
# Check Python versionpython --version# Should be 3.8+# Check dependenciespip list| grep -E"(torch|transformers|lancedb)"# Reinstall dependenciespip install -r requirements.txt --force-reinstall
# Check Ollama statusollama listcurl http://localhost:11434/api/tags# Pull missing modelsollama pull qwen3:0.6b
# Check database connectivitypython -c"from backend.database import ChatDatabase; db = ChatDatabase(); print('✅ Database OK')"# Reset database (WARNING: This deletes all data)rm backend/chat_data.dbpython -c"from backend.database import ChatDatabase; ChatDatabase().init_database()"
# Check system resourcespython system_health_check.py# Monitor memory usagehtop# or Task Manager on Windows# Optimize for low-memory systemsexport PYTORCH_CUDA_ALLOC_CONF=max_split_size_mb:512
Check Logs: The system creates structured logs in the
logs/
directory:logs/system.log
: Main system events and errorslogs/ollama.log
: Ollama server logslogs/rag-api.log
: RAG API processing logslogs/backend.log
: Backend server logslogs/frontend.log
: Frontend build and runtime logs
System Health: Run comprehensive diagnostics:
python system_health_check.py# Full system diagnosticspython run_system.py --health# Service status check
Health Endpoints: Check individual service health:
- Backend:
http://localhost:8000/health
- RAG API:
http://localhost:8001/health
- Ollama:
http://localhost:11434/api/tags
- Backend:
Documentation: Check theTechnical Documentation
GitHub Issues: Report bugs and request features
Community: Join our Discord/Slack community
# Session-based chat (recommended)POST /sessions/{session_id}/chatContent-Type: application/json{"query":"What are the main topics discussed?","search_type":"hybrid","retrieval_k":20,"ai_rerank":true,"context_window_size":5}# Legacy chat endpointPOST /chatContent-Type: application/json{"query":"What are the main topics discussed?","session_id":"uuid","search_type":"hybrid","retrieval_k":20}
# Create indexPOST /indexesContent-Type: application/json{"name":"My Index","description":"Description","config":"default"}# Get all indexesGET /indexes# Get specific indexGET /indexes/{id}# Upload documents to indexPOST /indexes/{id}/uploadContent-Type: multipart/form-datafiles: [file1.pdf, file2.pdf, ...]# Build index (process uploaded documents)POST /indexes/{id}/buildContent-Type: application/json{"config_mode":"default","enable_enrich":true,"chunk_size":512}# Delete indexDELETE /indexes/{id}
# Create sessionPOST /sessionsContent-Type: application/json{"title":"My Session","model":"qwen3:0.6b"}# Get all sessionsGET /sessions# Get specific sessionGET /sessions/{session_id}# Get session documentsGET /sessions/{session_id}/documents# Get session indexesGET /sessions/{session_id}/indexes# Link index to sessionPOST /sessions/{session_id}/indexes/{index_id}# Delete sessionDELETE /sessions/{session_id}# Rename sessionPOST /sessions/{session_id}/renameContent-Type: application/json{"new_title":"Updated Session Name"}
The system can break complex queries into sub-questions for better answers:
POST /sessions/{session_id}/chatContent-Type: application/json{"query":"Compare the methodologies and analyze their effectiveness","query_decompose":true,"compose_sub_answers":true}
Independent verification pass for accuracy using a separate verification model:
POST /sessions/{session_id}/chatContent-Type: application/json{"query":"What are the key findings?","verify":true}
Document context enrichment during indexing for better understanding:
# Enable during index buildingPOST /indexes/{id}/build{"enable_enrich": true,"window_size": 2}
Better context preservation by chunking after embedding:
# Configure in pipeline"late_chunking": {"enabled": true}
POST /chat/streamContent-Type: application/json{"query":"Explain the methodology","session_id":"uuid","stream":true}
# Using the batch indexing scriptpython demo_batch_indexing.py --config batch_indexing_config.json# Example batch configuration (batch_indexing_config.json):{"index_name":"Sample Batch Index","index_description":"Example batch index configuration","documents": ["./rag_system/documents/invoice_1039.pdf","./rag_system/documents/invoice_1041.pdf" ],"processing": {"chunk_size": 512,"chunk_overlap": 64,"enable_enrich": true,"enable_latechunk": true,"enable_docling": true,"embedding_model":"Qwen/Qwen3-Embedding-0.6B","generation_model":"qwen3:0.6b","retrieval_mode":"hybrid","window_size": 2 }}
# API endpoint for batch processingPOST /batch/indexContent-Type: application/json{"file_paths": ["doc1.pdf","doc2.pdf"],"config": {"chunk_size":512,"enable_enrich":true,"enable_latechunk":true,"enable_docling":true }}
For complete API documentation, seeAPI_REFERENCE.md.
LocalGPT is built with a modular, scalable architecture:
graph TB UI[Web Interface] --> API[Backend API] API --> Agent[RAG Agent] Agent --> Retrieval[Retrieval Pipeline] Agent --> Generation[Generation Pipeline] Retrieval --> Vector[Vector Search] Retrieval --> BM25[BM25 Search] Retrieval --> Rerank[Reranking] Vector --> LanceDB[(LanceDB)] BM25 --> BM25DB[(BM25 Index)] Generation --> Ollama[Ollama Models] Generation --> HF[Hugging Face Models] API --> SQLite[(SQLite DB)]
Overview of the Retrieval Agent
graph TD classDef llmcall fill:#e6f3ff,stroke:#007bff; classDef pipeline fill:#e6ffe6,stroke:#28a745; classDef cache fill:#fff3e0,stroke:#fd7e14; classDef logic fill:#f8f9fa,stroke:#6c757d; classDef thread stroke-dasharray: 5 5; A(Start: Agent.run) --> B_asyncio.run(_run_async); B --> C{_run_async}; C --> C1[Get Chat History]; C1 --> T1[Build Triage Prompt <br/> Query + Doc Overviews ]; T1 --> T2["(asyncio.to_thread)<br/>LLM Triage: RAG or LLM_DIRECT?"]; class T2 llmcall,thread; T2 --> T3{Decision?}; T3 -- RAG --> RAG_Path; T3 -- LLM_DIRECT --> LLM_Path; subgraph RAG Path RAG_Path --> R1[Format Query + History]; R1 --> R2["(asyncio.to_thread)<br/>Generate Query Embedding"]; class R2 pipeline,thread; R2 --> R3{{Check Semantic Cache}}; class R3 cache; R3 -- Hit --> R_Cache_Hit(Return Cached Result); R_Cache_Hit --> R_Hist_Update; R3 -- Miss --> R4{Decomposition <br/> Enabled?}; R4 -- Yes --> R5["(asyncio.to_thread)<br/>Decompose Raw Query"]; class R5 llmcall,thread; R5 --> R6{{Run Sub-Queries <br/> Parallel RAG Pipeline}}; class R6 pipeline,thread; R6 --> R7[Collect Results & Docs]; R7 --> R8["(asyncio.to_thread)<br/>Compose Final Answer"]; class R8 llmcall,thread; R8 --> V1(RAG Answer); R4 -- No --> R9["(asyncio.to_thread)<br/>Run Single Query <br/>(RAG Pipeline)"]; class R9 pipeline,thread; R9 --> V1; V1 --> V2{{Verification <br/> await verify_async}}; class V2 llmcall; V2 --> V3(Final RAG Result); V3 --> R_Cache_Store{{Store in Semantic Cache}}; class R_Cache_Store cache; R_Cache_Store --> FinalResult; end subgraph Direct LLM Path LLM_Path --> L1[Format Query + History]; L1 --> L2["(asyncio.to_thread)<br/>Generate Direct LLM Answer <br/> (No RAG)"]; class L2 llmcall,thread; L2 --> FinalResult(Final Direct Result); end FinalResult --> R_Hist_Update(Update Chat History); R_Hist_Update --> ZZZ(End: Return Result);
We welcome contributions from developers of all skill levels! LocalGPT is an open-source project that benefits from community involvement.
# Fork and clone the repositorygit clone https://github.com/PromtEngineer/localGPT.gitcd localGPT# Set up development environmentpip install -r requirements.txtnpm install# Install Ollama and modelscurl -fsSL https://ollama.ai/install.sh| shollama pull qwen3:0.6b qwen3:8b# Verify setuppython system_health_check.pypython run_system.py --mode dev
- 🐛 Report Bugs: Use ourbug report template
- 💡 Request Features: Use ourfeature request template
- 🔧 Submit Code: Follow ourdevelopment workflow
- 📚 Improve Docs: Help make our documentation better
For comprehensive contributing guidelines, including:
- Development setup and workflow
- Coding standards and best practices
- Testing requirements
- Documentation standards
- Release process
👉 See ourCONTRIBUTING.md guide
This project is licensed under the MIT License - see theLICENSE file for details. For models, please check their respective licenses.
- Documentation:Technical Docs
- Issues:GitHub Issues
- Discussions:GitHub Discussions
- Business Deployment and Customization:Contact Us
About
Chat with your documents on your local device using GPT models. No data leaves your device and 100% private.
Resources
Uh oh!
There was an error while loading.Please reload this page.
Stars
Watchers
Forks
Releases
Packages0
Uh oh!
There was an error while loading.Please reload this page.