- Notifications
You must be signed in to change notification settings - Fork24
[NAACL2025] LiteWebAgent: The Open-Source Suite for VLM-Based Web-Agent Applications
License
PathOnAIOrg/LiteWebAgent
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Repository files navigation
Disclaimer: Please note that LiteWebAgent is not affiliated with any for-profit company. This is a collaborative project from PathOnAI.org, an open-source AI research community, where Danqing Zhang (danqing.zhang.personal@gmail.com) is the main contributor and lead author of the NAACL paper. If anyone claims LiteWebAgent is affiliated with any for-profit company, please contact Danqing Zhang (danqing.zhang.personal@gmail.com) for verification.
VisualTreeSearch is a production-ready system for visualizing and understanding web agent test-time scaling. It builds upon LiteWebAgent to provide an intuitive framework for researchers and users to understand tree search execution in web agents.
- 🌐Project Page:PathOnAI.org/VisualTreeSearch
- 🎮Live Demo:visual-tree-search.pathonai.org
- 📄Paper:Read on arXiv
- 🎥Video Demo:Watch on YouTube
- [2025-03-06] The 'LiteWebAgent: The Open-Source Suite for VLM-Based Web-Agent Applications' paper is now available on arXiv:https://arxiv.org/abs/2503.02950
- [2025-02-28] "LiteWebAgent: The Open-Source Suite for VLM-Based Web-Agent Applications" was accepted by 2025 Annual Conference of the North American Chapter of the Association for Computational Linguistics -- System Demonstration Track (NAACL 2025).
- [2025-01-09] We reused LiteWebAgent infrastructure to buildLiteWebAgent Tree Search, which is set for release on 02/15.
- [2025-01-01] We built a standalone evaluation suite forX-WebArena evaluation and integrated it with LiteWebAgent.
- [2024-12-12] Released an async version of LiteWebAgent for improved compatibility with FastAPI AI backends.
- [2024-12-11] Deployed LiteWebAgent’s frontend and backend on Vercel.
- [2024-12-03]zzfoo integratedAWM (Agent Workflow Memory) into the LiteWebAgent framework.
- [2024-11-25] We set up a Chrome extension prototype using LiteWebAgent as an AI backend server to control the Chrome browser via Chrome DevTools Protocol.
- [2024-11-01] We refactored LiteWebAgent's tree search into a new repository calledLLMWebAgentTreeSearch.
- [2024-10-01] Completed a major refactoring of LiteWebAgent to make it flexible for importing the package, enabling the addition of web browsing capabilities to any AI agent.
- [2024-09-20] We reimplemented the paper Tree Search for Language Model Agents in the LiteWebAgent framework. Now, the search agent is capable of exploring different trajectories for accomplishing web browsing tasks and returning the most promising one. This is useful for finding the optimal path to complete complex web browsing tasks in an offline manner.
- [2024-08-22] The initial version of LiteWebAgent was released, providing a robust framework for using natural language to control a web agent.
From PyPI:https://pypi.org/project/litewebagent/
pip install litewebagentThen, a required step is to setup playwright by running
playwright install chromiumTest playwright & chromium installation by running this script
python test_installation.py
Then please create a .env file, and update your API keys:
cp .env.example .env
You are ready to go! Try FunctionCallingAgent on google.com
python examples/google_test.pySet up locally
First set up virtual environment, and allow your code to be able to see 'litewebagent'
python3.11 -m venv venv. venv/bin/activatepip3.11 install -e.
Then please create a .env file, and update your API keys:
cp .env.example .env
Test playwright & chromium installation by running this script
python3.11 test_installation.py
- use prompting-based web agent to finish some task and save the workflow
## easy casepython3.11 -m prompting_main --agent_type PromptAgent --starting_url https://www.google.com --goal'search dining table' --plan'search dining table' --log_folder log## more complicated casepython3.11 -m prompting_main --agent_type PromptAgent --starting_url https://www.amazon.com/ --goal'add a bag of dog food to the cart.' --plan'add a bag of dog food to the cart.' --log_folder log
- we also provide function-calling-based web agent
## easy casepython3.11 -m function_calling_main --agent_type FunctionCallingAgent --starting_url https://www.google.com --goal'search dining table' --plan'search dining table' --log_folder logpython3.11 -m function_calling_main --agent_type HighLevelPlanningAgent --starting_url https://www.google.com --goal'search dining table' --plan'search dining table' --log_folder logpython3.11 -m function_calling_main --agent_type ContextAwarePlanningAgent --starting_url https://www.google.com --goal'search dining table' --plan'search dining table' --log_folder log## more complicated casepython3.11 -m function_calling_main --agent_type FunctionCallingAgent --starting_url https://www.amazon.com/ --goal'add a bag of dog food to the cart.' --plan'add a bag of dog food to the cart.' --log_folder log
https://www.loom.com/share/1018bcc4e21c4a7eb517b60c2931ee3chttps://www.loom.com/share/aa48256478714d098faac740239c9013https://www.loom.com/share/89f5fa69b8cb49c8b6a60368ddcba103https://www.loom.com/share/8c59dc1a6f264641b6a448fb6b7b4a5c
We use axtree by default. Alternatively, you can provide a comma-separated string listing the desired input feature types.
python3.11 -m function_calling_main --agent_type FunctionCallingAgent --starting_url https://www.airbnb.com --goal'set destination as San Francisco, then search the results' --plan'(1) enter the "San Francisco" as destination, (2) and click search' --log_folder logpython3.11 -m function_calling_main --agent_type FunctionCallingAgent --starting_url https://www.airbnb.com --goal'set destination as San Francisco, then search the results' --plan'(1) enter the "San Francisco" as destination, (2) and click search' --features interactive_elements --log_folder logpython3.11 -m function_calling_main --agent_type FunctionCallingAgent --starting_url https://www.airbnb.com --goal'set destination as San Francisco, then search the results' --plan'(1) enter the "San Francisco" as destination, (2) and click search' --features axtree,interactive_elements --log_folder log
First, tell Git to ignore future changes to state.json:
git update-index --skip-worktree state.jsonThen run the load_state.py script and log into the websites to enable auto-login:
python3.11 load_state.py saveWe integratedAWM (Agent Workflow Memory) into the LiteWebAgent framework. You can follow these three steps to include induced workflows as memory for the web agent, we use 'add a bag of dog food to the cart' on amazon website as an example:
Step 1: Induce workflows from mind2web datasets
python3.11 memory/mind2web_workflows_induction.py --websites amazonPlease note that you can induce workflows for multiple websites by passing a comma-separated list of website names to the--websites parameter:
python3.11 memory/mind2web_workflows_induction.py --websites amazon,aaStep 2: Embed and store workflows in DB for retrieval
python3.11 memory/update_vector_store.pyStep 3: Run function calling agent with memory
python3.11 -m function_calling_main --agent_type FunctionCallingAgent --starting_url https://www.amazon.com/ --goal 'add a bag of dog food to the cart.' --workflow_memory_website amazonStart the Python backend server:
python3.11 -m api.server --port 5001
| Paper | Agent |
|---|---|
| SoM (Set-of-Mark) Agent | PromptAgent |
| Mind2Web | ContextAwarePlanningAgent |
| Tree Search for Language Model Agents | LLMWebAgentTreeSearch |
| Agent Workflow Memory | memory module |
Checkhow to set up a Chrome extension using LiteWebAgent as an AI backend server
https://www.loom.com/share/d2b03e39c13044d8b25fcf1644e88867
cite the repo
@misc{zhang2024litewebagent, author = {Danqing Zhang and Balaji Rama and Shiying He and Jingyi Ni}, title = {LiteWebAgent: The Open-Source Suite for VLM-Based Web-Agent Applications}, year = 2024, publisher = {Zenodo}, doi = {10.5281/zenodo.15500270}, url = {https://doi.org/10.5281/zenodo.15500270}}cite the NAACL paper
@inproceedings{zhang2025litewebagent, title={LiteWebAgent: The Open-Source Suite for VLM-Based Web-Agent Applications}, author={Danqing Zhang, Balaji Rama, Junyu Cao, Fu Zhao, Kunyu Chen, Jingyi Ni, Shiying He, Arnold Chen}, booktitle={2025 Annual Conference of the North American Chapter of the Association for Computational Linguistics -- System Demonstration Track}, year={2025}}About
[NAACL2025] LiteWebAgent: The Open-Source Suite for VLM-Based Web-Agent Applications
Topics
Resources
License
Uh oh!
There was an error while loading.Please reload this page.
Stars
Watchers
Forks
Packages0
Uh oh!
There was an error while loading.Please reload this page.
Contributors7
Uh oh!
There was an error while loading.Please reload this page.
