@@ -1438,8 +1438,7 @@ let p_measure_intpower unt n st =
14381438// Pickle a rational power of a unit-of-measure variable or constructor
14391439let rec p_measure_power unt q st =
14401440if q= ZeroRationalthen p_ measure_ one st
1441- else
1442- if GetDenominator q= 1
1441+ elif GetDenominator q= 1
14431442then p_ measure_ intpower unt( GetNumerator q) st
14441443else p_ byte5 st; p_ measure_ varcon unt st; p_ rational q st
14451444
@@ -1449,11 +1448,11 @@ let rec p_measure_power unt q st =
14491448let rec p_normalized_measure unt st =
14501449let unt = stripUnitEqnsAuxfalse unt
14511450match untwith
1452- | MeasureCon tcref-> p _ measurecon tcref st
1451+ | MeasureCon tcref-> p _ measure _ con tcref st
14531452| MeasureInv x-> p_ byte1 st; p_ normalized_ measure x st
14541453| MeasureProd( x1, x2) -> p_ byte2 st; p_ normalized_ measure x1 st; p_ normalized_ measure x2 st
1455- | MeasureVar v-> p _ measurevar v st
1456- | MeasureOne-> p_ measure_ one
1454+ | MeasureVar v-> p _ measure _ var v st
1455+ | MeasureOne-> p_ measure_ one st
14571456| MeasureRationalPower( x, q) -> p_ measure_ power x q st
14581457
14591458// By normalizing the unit-of-measure and treating integer powers as a special case,