- Notifications
You must be signed in to change notification settings - Fork476
⚡️An Easy-to-use and Fast Deep Learning Model Deployment Toolkit for ☁️Cloud 📱Mobile and 📹Edge. Including Image, Video, Text and Audio 20+ main stream scenarios and 150+ SOTA models with end-to-end optimization, multi-platform and multi-framework support.
License
PaddlePaddle/FastDeploy
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
English |简体中文 |हिन्दी |日本語 |한국인 |Pу́сский язы́к
Installation | Documents | Quick Start | API Docs | Release Notes
⚡️FastDeploy is anEasy-to-use andHigh Performance AI model deployment toolkit for Cloud, Mobile and Edge with 📦out-of-the-box and unified experience, 🔚end-to-end optimization for over🔥160+ Text, Vision, Speech and Cross-modal AI models.Includingimage classification,object detection,OCR,face detection,matting,pp-tracking,NLP,stable diffusion,TTS and other tasks to meet developers' industrial deployment needs formulti-scenario,multi-hardware andmulti-platform.
✨✨✨ In2023.01.17 we releasedYOLOv8 for deployment on FastDeploy series hardware, which includesPaddle YOLOv8 andultralytics YOLOv8
- You can deployPaddle YOLOv8 onIntel CPU,NVIDIA GPU,Jetson,Phytium,Kunlunxin,HUAWEI Ascend ,ARM CPURK3588 andSophgo TPU. BothPython deployments andC++ deployments are included.
- You can deployultralytics YOLOv8 onIntel CPU,NVIDIA GPU,Jetson. BothPython deployments andC++ deployments are included
- Fastdeploy supports quick deployment of multiple models, includingYOLOv8,PP-YOLOE+,YOLOv5 and other models
Serving deployment combined with VisualDL supports visual deployment. After the VDL service is started in the FastDeploy container, you can modify the model configuration, start/manage the model service, view performance data, and send requests on the VDL interface. For details, see related documents
✨👥✨ Community
- Slack:Join ourSlack community and chat with other community members about ideas
- Wechat:Scan the QR code below using WeChat, follow the PaddlePaddle official account and fill out the questionnaire to join the WeChat group, and share the deployment industry implementation pain points with the community developers
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | |
---|---|---|---|---|---|---|---|
X86_64 CPU | ![]() | ||||||
NVDIA GPU | ![]() | ![]() | |||||
Phytium CPU | |||||||
KunlunXin XPU | |||||||
Huawei Ascend NPU | |||||||
Graphcore IPU | ![]() | ||||||
Sophgo | |||||||
Intel graphics card | |||||||
Jetson | ![]() | ![]() | |||||
ARM CPU | |||||||
RK3588 etc. | |||||||
RV1126 etc. | |||||||
Amlogic | |||||||
NXP |
- ✴️ A Quick Start for Python SDK
- ✴️ A Quick Start for C++ SDK
- Installation
- How to Install Prebuilt Library
- How to Build GPU Deployment Environment
- How to Build CPU Deployment Environment
- How to Build IPU Deployment Environment
- How to Build KunlunXin XPU Deployment Environment
- How to Build RV1126 Deployment Environment
- How to Build RKNPU2 Deployment Environment
- How to Build A311D Deployment Environment
- How to build Huawei Ascend Deployment Environment
- How to Build FastDeploy Library on Nvidia Jetson Platform
- How to Build FastDeploy Android C++ SDK
- Quick Start
- Demos on Different Backends
- Serving Deployment
- API Documents
- Performance Tune-up
- FAQ
- More FastDeploy Deploy Modules
- Model list
- 💕 Developer Contributions
A Quick Start for Python SDK(click to fold)
- CUDA >= 11.2 、cuDNN >= 8.0 、 Python >= 3.6
- OS: Linux x86_64/macOS/Windows 10
pip install fastdeploy-gpu-python -f https://www.paddlepaddle.org.cn/whl/fastdeploy.html
conda config --add channels conda-forge&& conda install cudatoolkit=11.2 cudnn=8.2
pip install fastdeploy-python -f https://www.paddlepaddle.org.cn/whl/fastdeploy.html
- Prepare model and picture
wget https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco.tgztar xvf ppyoloe_crn_l_300e_coco.tgzwget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
- Test inference results
# For deployment of GPU/TensorRT, please refer to examples/vision/detection/paddledetection/pythonimportcv2importfastdeploy.visionasvisionim=cv2.imread("000000014439.jpg")model=vision.detection.PPYOLOE("ppyoloe_crn_l_300e_coco/model.pdmodel","ppyoloe_crn_l_300e_coco/model.pdiparams","ppyoloe_crn_l_300e_coco/infer_cfg.yml")result=model.predict(im)print(result)vis_im=vision.vis_detection(im,result,score_threshold=0.5)cv2.imwrite("vis_image.jpg",vis_im)
A Quick Start for C++ SDK(click to expand)
- Please refer toC++ Prebuilt Libraries Download
- Prepare models and pictures
wget https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco.tgztar xvf ppyoloe_crn_l_300e_coco.tgzwget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
- Test inference results
// For GPU/TensorRT deployment, please refer to examples/vision/detection/paddledetection/cpp#include"fastdeploy/vision.h"intmain(int argc,char* argv[]) {namespacevision= fastdeploy::vision;auto im =cv::imread("000000014439.jpg");auto model =vision::detection::PPYOLOE("ppyoloe_crn_l_300e_coco/model.pdmodel","ppyoloe_crn_l_300e_coco/model.pdiparams","ppyoloe_crn_l_300e_coco/infer_cfg.yml"); vision::DetectionResult res; model.Predict(&im, &res);auto vis_im =vision::VisDetection(im, res,0.5);cv::imwrite("vis_image.jpg", vis_im);return0; }
For more deployment models, please refer toVision Model Deployment Examples .
Notes: ✅: already supported; ❔: to be supported in the future; N/A: Not Available;
Server-side and cloud model list(click to fold)
Task | Model | Linux | Linux | Win | Win | Mac | Mac | Linux | Linux | Linux | Linux | Linux | Linux | Linux |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
--- | --- | X86 CPU | NVIDIA GPU | X86 CPU | NVIDIA GPU | X86 CPU | Arm CPU | AArch64 CPU | Phytium D2000 aarch64 | NVIDIA Jetson | Graphcore IPU | kunlunxin XPU | Huawei Ascend | Serving |
Classification | PaddleClas/ResNet50 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
Classification | TorchVison/ResNet | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ✅ | ✅ | ❔ |
Classification | ltralytics/YOLOv5Cls | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ✅ | ❔ | ❔ |
Classification | PaddleClas/PP-LCNet | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
Classification | PaddleClas/PP-LCNetv2 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
Classification | PaddleClas/EfficientNet | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
Classification | PaddleClas/GhostNet | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
Classification | PaddleClas/MobileNetV1 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
Classification | PaddleClas/MobileNetV2 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
Classification | PaddleClas/MobileNetV3 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
Classification | PaddleClas/ShuffleNetV2 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
Classification | PaddleClas/SqueeezeNetV1.1 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
Classification | PaddleClas/Inceptionv3 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ✅ | ✅ | ✅ |
Classification | PaddleClas/PP-HGNet | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
Detection | 🔥🔥PaddleDetection/PP-YOLOE+ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ✅ | ✅ | ✅ |
Detection | 🔥PaddleDetection/YOLOv8 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ✅ | ✅ | ❔ |
Detection | 🔥ultralytics/YOLOv8 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ✅ | ❔ | ❔ | ❔ | ❔ |
Detection | PaddleDetection/PicoDet | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ✅ | ❔ | ✅ |
Detection | PaddleDetection/YOLOX | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ✅ | ✅ | ✅ |
Detection | PaddleDetection/YOLOv3 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ✅ | ✅ | ✅ |
Detection | PaddleDetection/PP-YOLO | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ✅ | ✅ | ✅ |
Detection | PaddleDetection/PP-YOLOv2 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ✅ | ✅ | ✅ |
Detection | PaddleDetection/Faster-RCNN | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ✅ | ❔ | ✅ |
Detection | PaddleDetection/Mask-RCNN | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ✅ | ❔ | ✅ |
Detection | Megvii-BaseDetection/YOLOX | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ✅ | ✅ | ❔ |
Detection | WongKinYiu/YOLOv7 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ✅ | ✅ | ❔ |
Detection | WongKinYiu/YOLOv7end2end_trt | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ✅ | ❔ | ❔ | ❔ | ❔ |
Detection | WongKinYiu/YOLOv7end2end_ort | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ | ❔ | ❔ |
Detection | meituan/YOLOv6 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ✅ | ❔ |
Detection | ultralytics/YOLOv5 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ✅ | ✅ | ✅ |
Detection | WongKinYiu/YOLOR | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ✅ | ❔ | ❔ | ✅ | ❔ |
Detection | WongKinYiu/ScaledYOLOv4 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ | ❔ | ❔ |
Detection | ppogg/YOLOv5Lite | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ? | ❔ | ❔ | ❔ |
Detection | RangiLyu/NanoDetPlus | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ | ❔ | ❔ |
Perception | Paddle3D/Smoke | ❔ | ✅ | ❔ | ✅ | ❔ | ❔ | ❔ | ❔ | ❔ | ❔ | ❔ | ❔ | ✅ |
KeyPoint | PaddleDetection/TinyPose | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ✅ | ❔ | ❔ |
KeyPoint | PaddleDetection/PicoDet + TinyPose | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ✅ | ❔ | ❔ |
HeadPose | omasaht/headpose | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ✅ | ❔ | ❔ | ❔ | ❔ |
Tracking | PaddleDetection/PP-Tracking | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ | ❔ | ❔ |
OCR | PaddleOCR/PP-OCRv2 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ✅ | ❔ | ✅ | ✅ | ❔ |
OCR | PaddleOCR/PP-OCRv3 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ✅ | ✅ | ✅ |
Segmentation | PaddleSeg/PP-LiteSeg | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ✅ | ❔ | ✅ | ❔ | ❔ |
Segmentation | PaddleSeg/PP-HumanSegLite | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ✅ | ❔ | ✅ | ✅ | ❔ |
Segmentation | PaddleSeg/HRNet | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ✅ | ❔ | ✅ | ✅ | ❔ |
Segmentation | PaddleSeg/PP-HumanSegServer | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ✅ | ❔ | ✅ | ✅ | ❔ |
Segmentation | PaddleSeg/Unet | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ✅ | ✅ | ✅ | ✅ | ❔ |
Segmentation | PaddleSeg/Deeplabv3 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ✅ | ❔ | ✅ | ✅ | ❔ |
FaceDetection | biubug6/RetinaFace | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ | ❔ | ❔ |
FaceDetection | Linzaer/UltraFace | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ | ❔ | ❔ |
FaceDetection | deepcam-cn/YOLOv5Face | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ | ❔ | ❔ |
FaceDetection | insightface/SCRFD | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ | ❔ | ❔ |
FaceAlign | Hsintao/PFLD | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ | ❔ | ❔ |
FaceAlign | Single430/FaceLandmark1000 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ✅ | ❔ | ❔ | ❔ | ❔ |
FaceAlign | jhb86253817/PIPNet | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ✅ | ❔ | ❔ | ❔ | ❔ |
FaceRecognition | insightface/ArcFace | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ | ❔ | ❔ |
FaceRecognition | insightface/CosFace | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ | ❔ | ❔ |
FaceRecognition | insightface/PartialFC | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ | ❔ | ❔ |
FaceRecognition | insightface/VPL | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ | ❔ | ❔ |
Matting | ZHKKKe/MODNet | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ✅ | ❔ | ❔ | ❔ | ❔ |
Matting | PeterL1n/RobustVideoMatting | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ✅ | ❔ | ❔ | ❔ | ❔ |
Matting | PaddleSeg/PP-Matting | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ✅ | ✅ | ❔ |
Matting | PaddleSeg/PP-HumanMatting | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ✅ | ✅ | ❔ |
Matting | PaddleSeg/ModNet | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ | ❔ | ❔ |
Video Super-Resolution | PaddleGAN/BasicVSR | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ✅ | ❔ | ❔ | ❔ | ❔ |
Video Super-Resolution | PaddleGAN/EDVR | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ✅ | ❔ | ❔ | ❔ | ❔ |
Video Super-Resolution | PaddleGAN/PP-MSVSR | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ✅ | ❔ | ❔ | ❔ | ❔ |
Information Extraction | PaddleNLP/UIE | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ✅ | ❔ | ❔ | ❔ | |
NLP | PaddleNLP/ERNIE-3.0 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ | ❔ | ✅ | ❔ | ✅ |
Speech | PaddleSpeech/PP-TTS | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ | -- | ❔ | ❔ | ✅ |
Mobile and Edge Model List(click to fold)
Task | Model | Size(MB) | Linux | Android | Linux | Linux | Linux | Linux | Linux | TBD ... |
---|---|---|---|---|---|---|---|---|---|---|
--- | --- | --- | ARM CPU | ARM CPU | Rockchip NPU RK3588/RK3568/RK3566 | Rockchip NPU RV1109/RV1126/RK1808 | Amlogic NPU A311D/S905D/C308X | NXP NPU i.MX 8M Plus | TBD... | |
Classification | PaddleClas/ResNet50 | 98 | ✅ | ✅ | ✅ | ✅ | ||||
Classification | PaddleClas/PP-LCNet | 11.9 | ✅ | ✅ | ❔ | ✅ | -- | -- | -- | |
Classification | PaddleClas/PP-LCNetv2 | 26.6 | ✅ | ✅ | ❔ | ✅ | -- | -- | -- | |
Classification | PaddleClas/EfficientNet | 31.4 | ✅ | ✅ | ❔ | ✅ | -- | -- | -- | |
Classification | PaddleClas/GhostNet | 20.8 | ✅ | ✅ | ❔ | ✅ | -- | -- | -- | |
Classification | PaddleClas/MobileNetV1 | 17 | ✅ | ✅ | ❔ | ✅ | -- | -- | -- | |
Classification | PaddleClas/MobileNetV2 | 14.2 | ✅ | ✅ | ❔ | ✅ | -- | -- | -- | |
Classification | PaddleClas/MobileNetV3 | 22 | ✅ | ✅ | ❔ | ✅ | ❔ | ❔ | -- | |
Classification | PaddleClas/ShuffleNetV2 | 9.2 | ✅ | ✅ | ❔ | ✅ | -- | -- | -- | |
Classification | PaddleClas/SqueezeNetV1.1 | 5 | ✅ | ✅ | ❔ | ✅ | -- | -- | -- | |
Classification | PaddleClas/Inceptionv3 | 95.5 | ✅ | ✅ | ❔ | ✅ | -- | -- | -- | |
Classification | PaddleClas/PP-HGNet | 59 | ✅ | ✅ | ❔ | ✅ | -- | -- | -- | |
Detection | PaddleDetection/PicoDet_s | 4.9 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | -- | |
Detection | YOLOv5 | ❔ | ❔ | ✅ | ❔ | ❔ | ❔ | -- | ||
Face Detection | deepinsight/SCRFD | 2.5 | ✅ | ✅ | ✅ | -- | -- | -- | -- | |
Keypoint Detection | PaddleDetection/PP-TinyPose | 5.5 | ✅ | ✅ | ❔ | ❔ | ❔ | ❔ | -- | |
Segmentation | PaddleSeg/PP-LiteSeg(STDC1) | 32.2 | ✅ | ✅ | ✅ | -- | -- | -- | -- | |
Segmentation | PaddleSeg/PP-HumanSeg-Lite | 0.556 | ✅ | ✅ | ✅ | -- | -- | -- | -- | |
Segmentation | PaddleSeg/HRNet-w18 | 38.7 | ✅ | ✅ | ✅ | -- | -- | -- | -- | |
Segmentation | PaddleSeg/PP-HumanSeg | 107.2 | ✅ | ✅ | ✅ | -- | -- | -- | -- | |
Segmentation | PaddleSeg/Unet | 53.7 | ✅ | ✅ | ✅ | -- | -- | -- | -- | |
Segmentation | PaddleSeg/Deeplabv3 | 150 | ❔ | ✅ | ✅ | |||||
OCR | PaddleOCR/PP-OCRv2 | 2.3+4.4 | ✅ | ✅ | ❔ | -- | -- | -- | -- | |
OCR | PaddleOCR/PP-OCRv3 | 2.4+10.6 | ✅ | ❔ | ❔ | ❔ | ❔ | ❔ | -- |
Web and mini program model list(click to fold)
Task | Model | web_demo |
---|---|---|
--- | --- | Paddle.js |
Detection | FaceDetection | ✅ |
Detection | ScrewDetection | ✅ |
Segmentation | PaddleSeg/HumanSeg | ✅ |
Object Recognition | GestureRecognition | ✅ |
Object Recognition | ItemIdentification | ✅ |
OCR | PaddleOCR/PP-OCRv3 | ✅ |
We sincerely appreciate the open-sourced capabilities inEasyEdge as we adopt it for the SDK generation and download in this project.
FastDeploy is provided under theApache-2.0.
About
⚡️An Easy-to-use and Fast Deep Learning Model Deployment Toolkit for ☁️Cloud 📱Mobile and 📹Edge. Including Image, Video, Text and Audio 20+ main stream scenarios and 150+ SOTA models with end-to-end optimization, multi-platform and multi-framework support.