- Notifications
You must be signed in to change notification settings - Fork2
High dimensional shrinkage optimal portfolios in R
License
Otryakhin-Dmitry/high-dimensional-shrinkage-optimal-portfolios
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Repository files navigation
The package features a framework for working with high-dimensional shrinkageoptimal portfolios. It allows constructing those in two ways: 1) by applyingshrinkage directly to the portfolio weights (functionMVShrinkPortfolio) and2) by obtaining shrinkage estimates of mean returns and covariance matrices(functionMeanVar_portfolio).
The latest stable release is always on CRAN:
install.packages('HDShOP')The latest development version can be installed in the following way:
library("remotes")u<-"Otryakhin-Dmitry/"r<-"global-minimum-variance-portfolio"re<- paste(u,r,sep="")remotes::install_github(repo=re,subdir="")
In this example, returns of assets from S&P500 are loaded and an MV portfolio iscreated, for which methodssummary andplot are called.
library(HDShOP)# loading S&P daily asset returnsdata("SP_daily_asset_returns")assets<- t(SP_daily_asset_returns[2:301,2:201])gamma<-1p<- nrow(assets)b<-exp(-0.1*(1:p))# creating an MV shrinkage portfoliosh_mv_port<- MVShrinkPortfolio(x=assets,gamma=gamma,type='shrinkage',b=b,beta=0.05)# Making a summary and plotting the portfoliosummary(sh_mv_port)plot(sh_mv_port)
Taras Bodnar, Solomiia Dmytriv, Yarema Okhrin, Dmitry Otryakhin & NestorParolya (12 May 2025): High-Dimensional portfolio selection with HDShOP package, TheEuropean Journal of Finance,DOI: 10.1080/1351847X.2025.2501637
About
High dimensional shrinkage optimal portfolios in R
Topics
Resources
License
Contributing
Uh oh!
There was an error while loading.Please reload this page.
Stars
Watchers
Forks
Releases
Packages0
Contributors2
Uh oh!
There was an error while loading.Please reload this page.