Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

[TRTLLM-6825][fix] Update lora for phi4-mm#7149

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to ourterms of service andprivacy statement. We’ll occasionally send you account related emails.

Already on GitHub?Sign in to your account

Conversation

@Wanli-Jiang
Copy link
Collaborator

@Wanli-JiangWanli-Jiang commentedAug 22, 2025
edited by coderabbitaibot
Loading

This PR is copied from#6817, which can fix the accuracy issue in phi4-mm when using LoRA.

Summary by CodeRabbit

  • New Features

    • Added LoRA utilities to simplify loading and configuration, including a helper to generate LoRA requests per modality.
    • Introduced an option to disable a specific LoRA weight swap for improved compatibility (defaults to enabled).
    • Auto-completes missing attention Q/K/V targets and provides a default module mapping.
    • Updated multimodal model config to use the new MLP target and mapping.
  • Tests

    • Adjusted integration tests and performance config to reflect updated multimodal outputs and the optional weight-swap flag.

Description

Test Coverage

GitHub Bot Help

/bot [-h] ['run', 'kill', 'skip', 'reuse-pipeline'] ...

Provide a user friendly way for developers to interact with a Jenkins server.

Run/bot [-h|--help] to print this help message.

See details below for each supported subcommand.

run [--reuse-test (optional)pipeline-id --disable-fail-fast --skip-test --stage-list "A10-PyTorch-1, xxx" --gpu-type "A30, H100_PCIe" --test-backend "pytorch, cpp" --add-multi-gpu-test --only-multi-gpu-test --disable-multi-gpu-test --post-merge --extra-stage "H100_PCIe-TensorRT-Post-Merge-1, xxx" --detailed-log --debug(experimental)]

Launch build/test pipelines. All previously running jobs will be killed.

--reuse-test (optional)pipeline-id(OPTIONAL) : Allow the new pipeline to reuse build artifacts and skip successful test stages from a specified pipeline or the last pipeline if no pipeline-id is indicated. If the Git commit ID has changed, this option will be always ignored. The DEFAULT behavior of the bot is to reuse build artifacts and successful test results from the last pipeline.

--disable-reuse-test(OPTIONAL) : Explicitly prevent the pipeline from reusing build artifacts and skipping successful test stages from a previous pipeline. Ensure that all builds and tests are run regardless of previous successes.

--disable-fail-fast(OPTIONAL) : Disable fail fast on build/tests/infra failures.

--skip-test(OPTIONAL) : Skip all test stages, but still run build stages, package stages and sanity check stages. Note: DoesNOT update GitHub check status.

--stage-list "A10-PyTorch-1, xxx"(OPTIONAL) : Only run the specified test stages. Examples: "A10-PyTorch-1, xxx". Note: DoesNOT update GitHub check status.

--gpu-type "A30, H100_PCIe"(OPTIONAL) : Only run the test stages on the specified GPU types. Examples: "A30, H100_PCIe". Note: DoesNOT update GitHub check status.

--test-backend "pytorch, cpp"(OPTIONAL) : Skip test stages which don't match the specified backends. Only support [pytorch, cpp, tensorrt, triton]. Examples: "pytorch, cpp" (does not run test stages with tensorrt or triton backend). Note: DoesNOT update GitHub pipeline status.

--only-multi-gpu-test(OPTIONAL) : Only run the multi-GPU tests. Note: DoesNOT update GitHub check status.

--disable-multi-gpu-test(OPTIONAL) : Disable the multi-GPU tests. Note: DoesNOT update GitHub check status.

--add-multi-gpu-test(OPTIONAL) : Force run the multi-GPU tests in addition to running L0 pre-merge pipeline.

--post-merge(OPTIONAL) : Run the L0 post-merge pipeline instead of the ordinary L0 pre-merge pipeline.

--extra-stage "H100_PCIe-TensorRT-Post-Merge-1, xxx"(OPTIONAL) : Run the ordinary L0 pre-merge pipeline and specified test stages. Examples: --extra-stage "H100_PCIe-TensorRT-Post-Merge-1, xxx".

--detailed-log(OPTIONAL) : Enable flushing out all logs to the Jenkins console. This will significantly increase the log volume and may slow down the job.

--debug(OPTIONAL) :Experimental feature. Enable access to the CI container for debugging purpose. Note: Specify exactly one stage in thestage-list parameter to access the appropriate container environment. Note: DoesNOT update GitHub check status.

For guidance on mapping tests to stage names, seedocs/source/reference/ci-overview.md
and thescripts/test_to_stage_mapping.py helper.

kill

kill

Kill all running builds associated with pull request.

skip

skip --comment COMMENT

Skip testing for latest commit on pull request.--comment "Reason for skipping build/test" is required. IMPORTANT NOTE: This is dangerous since lack of user care and validation can cause top of tree to break.

reuse-pipeline

reuse-pipeline

Reuse a previous pipeline to validate current commit. This action will also kill all currently running builds associated with the pull request. IMPORTANT NOTE: This is dangerous since lack of user care and validation can cause top of tree to break.

@coderabbitai
Copy link
Contributor

coderabbitaibot commentedAug 22, 2025
edited
Loading

Warning

Rate limit exceeded

@Wanli-Jiang has exceeded the limit for the number of commits or files that can be reviewed per hour. Please wait9 minutes and 34 seconds before requesting another review.

⌛ How to resolve this issue?

After the wait time has elapsed, a review can be triggered using the@coderabbitai review command as a PR comment. Alternatively, push new commits to this PR.

We recommend that you space out your commits to avoid hitting the rate limit.

🚦 How do rate limits work?

CodeRabbit enforces hourly rate limits for each developer per organization.

Our paid plans have higher rate limits than the trial, open-source and free plans. In all cases, we re-allow further reviews after a brief timeout.

Please see ourFAQ for further information.

📥 Commits

Reviewing files that changed from the base of the PR and between78dc18b and7e4974b.

📒 Files selected for processing (7)
  • tensorrt_llm/_torch/models/modeling_phi4mm.py (1 hunks)
  • tensorrt_llm/_torch/pyexecutor/_util.py (1 hunks)
  • tensorrt_llm/_torch/pyexecutor/model_engine.py (1 hunks)
  • tensorrt_llm/_torch/pyexecutor/resource_manager.py (1 hunks)
  • tensorrt_llm/lora_manager.py (4 hunks)
  • tests/integration/defs/perf/pytorch_model_config.py (1 hunks)
  • tests/integration/defs/test_e2e.py (1 hunks)
📝 Walkthrough

Walkthrough

Adds a configurable flag to control swapping ofgate_up_proj.lora_B.weight, updates Phi4MM LoRA targets/mappings (renamingmlp_h_to_4hmlp_gate_up), introduces a lora_helper module with LoraConfig/utilities, and propagates the new flag through pyexecutor/resource manager and tests.

Changes

Cohort / File(s)Summary
Phi4MM LoRA config updates
tensorrt_llm/_torch/models/modeling_phi4mm.py
Removedlora_dir, replacedmlp_h_to_4h withmlp_gate_up, updated mapping to"mlp_gate_up": "gate_up_proj", addedswap_gate_up_proj_lora_b_weight=False, and added staticlora_request(...).
LoRA helpers & config
tensorrt_llm/lora_helper.py
New helper module:LoraConfig dataclass (includesswap_gate_up_proj_lora_b_weight),use_lora,get_missing_qkv_modules_from_lora_modules, and default TRTL↔HF module map.
LoRA manager updates
tensorrt_llm/lora_manager.py
Addedswap_gate_up_proj_lora_b_weight toLoraConfig andLoraModelConfig;preprocess_lora_weights now acceptsmodel_config and conditionalizes the gate_up swap on the flag.
PyExecutor wiring
tensorrt_llm/_torch/pyexecutor/model_engine.py
tensorrt_llm/_torch/pyexecutor/_util.py
tensorrt_llm/_torch/pyexecutor/resource_manager.py
PyTorchModelEngine.set_lora_model_config gainsswap_gate_up_proj_lora_b_weight param (default True); callers andPeftCacheManager now pass the flag intoLoraModelConfig and intoset_lora_model_config.
Perf config changes
tests/integration/defs/perf/pytorch_model_config.py
Forphi_4_multimodal_instruct: usemlp_gate_up in targets and mapping, setswap_gate_up_proj_lora_b_weight=False.
Test expectation updates
tests/integration/defs/test_e2e.py
Updated expected keywords for multimodal Phi4MM image and image_audio test cases.

Sequence Diagram(s)

sequenceDiagram  autonumber  actor Caller as Caller (tests/app)  participant Util as _util.create_py_executor_instance  participant Engine as PyTorchModelEngine  participant RM as ResourceManager/PeftCacheManager  participant LM as LoraManager  participant MC as LoraModelConfig  Caller->>Util: build engine with lora_config  Util->>Engine: set_lora_model_config(targets, map, swap_flag)  Engine->>MC: LoraModelConfig(..., swap_flag)  Engine-->>Util: configured  Util->>RM: init PeftCacheManager(with MC)  RM->>LM: load_from_hf(..., model_config=MC)  LM->>LM: preprocess_lora_weights(lora_model, MC)  alt swap_flag == True    note right of LM #DFF2BF: perform swap of gate_up_proj.lora_B.weight  else swap_flag == False    note right of LM #FFD6D6: skip swap  end  LM-->>RM: lora weights loaded
Loading

Estimated code review effort

🎯 3 (Moderate) | ⏱️ ~25 minutes

Possibly related PRs

Suggested reviewers

  • amitz-nv
  • venkywonka
  • shaharmor98
  • amukkara
✨ Finishing Touches
  • 📝 Generate Docstrings
🧪 Generate unit tests
  • Create PR with unit tests
  • Post copyable unit tests in a comment

Thanks for using CodeRabbit! It's free for OSS, and your support helps us grow. If you like it, consider giving us a shout-out.

❤️ Share
🪧 Tips

Chat

There are 3 ways to chat withCodeRabbit:

  • Review comments: Directly reply to a review comment made by CodeRabbit. Example:
    • I pushed a fix in commit <commit_id>, please review it.
    • Open a follow-up GitHub issue for this discussion.
  • Files and specific lines of code (under the "Files changed" tab): Tag@coderabbitai in a new review comment at the desired location with your query.
  • PR comments: Tag@coderabbitai in a new PR comment to ask questions about the PR branch. For the best results, please provide a very specific query, as very limited context is provided in this mode. Examples:
    • @coderabbitai gather interesting stats about this repository and render them as a table. Additionally, render a pie chart showing the language distribution in the codebase.
    • @coderabbitai read the files in the src/scheduler package and generate a class diagram using mermaid and a README in the markdown format.

Support

Need help? Create a ticket on oursupport page for assistance with any issues or questions.

CodeRabbit Commands (Invoked using PR/Issue comments)

Type@coderabbitai help to get the list of available commands.

Other keywords and placeholders

  • Add@coderabbitai ignore anywhere in the PR description to prevent this PR from being reviewed.
  • Add@coderabbitai summary to generate the high-level summary at a specific location in the PR description.
  • Add@coderabbitai or@coderabbitai title anywhere in the PR title to generate the title automatically.

Status, Documentation and Community

  • Visit ourStatus Page to check the current availability of CodeRabbit.
  • Visit ourDocumentation for detailed information on how to use CodeRabbit.
  • Join ourDiscord Community to get help, request features, and share feedback.
  • Follow us onX/Twitter for updates and announcements.

@Wanli-JiangWanli-Jiangforce-pushed theuser/williamj/fix-phi4mm-lora-rc branch fromf4adb25 to78dc18bCompareAugust 22, 2025 06:17
@Wanli-JiangWanli-Jiang marked this pull request as ready for reviewAugust 22, 2025 06:21
@Wanli-JiangWanli-Jiang requested a review froma team as acode ownerAugust 22, 2025 06:21
@Wanli-Jiang
Copy link
CollaboratorAuthor

/bot run

@tensorrt-cicd
Copy link
Collaborator

PR_Github #16136 [ run ] triggered by Bot

Copy link
Contributor

@coderabbitaicoderabbitaibot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others.Learn more.

Actionable comments posted: 0

Caution

Some comments are outside the diff and can’t be posted inline due to platform limitations.

⚠️ Outside diff range comments (1)
tensorrt_llm/lora_helper.py (1)

82-103:Duplicate LoraConfig class defined in two modules — unify to a single type to avoid runtime confusion.

HavingLoraConfig in bothtensorrt_llm.lora_manager andtensorrt_llm.lora_helper is error-prone (type checks, serialization, defaults can diverge). Prefer a single canonical class, and re-export it from helpers for convenience.

Apply this minimal aliasing to remove the duplicate definition and re-use the manager’s class:

-from dataclasses import dataclass, field-from typing import Dict, List, Optional--from ._utils import DictConversion+from dataclasses import dataclass, field+from typing import Dict, List, Optional++from ._utils import DictConversion+from .lora_manager import LoraConfig as _ManagerLoraConfig@@-@dataclass-class LoraConfig(DictConversion):-    lora_dir: List[str] = field(default_factory=list)-    lora_ckpt_source: str = "hf"-    max_lora_rank: int = 64-    lora_target_modules: List[str] = field(default_factory=list)-    trtllm_modules_to_hf_modules: Dict[str, str] = field(default_factory=dict)-    max_loras: Optional[int] = None-    max_cpu_loras: Optional[int] = None-    swap_gate_up_proj_lora_b_weight: bool = True--    def __post_init__(self):-        assert self.lora_ckpt_source in [-            "hf", "nemo"-        ], (f"lora_ckpt_source must be one of 'hf' or 'nemo', got {self.lora_ckpt_source}"-            )--    @property-    def missing_qkv_modules(self) -> List[str]:-        return get_missing_qkv_modules_from_lora_modules(-            self.lora_target_modules)+# Re-export the canonical LoraConfig to avoid duplication and divergence.+LoraConfig = _ManagerLoraConfig

If keeping a helper-only facade is required for public API stability, re-exporting preserves import paths (e.g.,from tensorrt_llm.lora_helper import LoraConfig) without duplicating implementation.

🧹 Nitpick comments (5)
tensorrt_llm/lora_manager.py (1)

1031-1042:Make the swap robust: avoid mutating dict during iteration, assert even rows, and drop unnecessary clone.

  • Mutatinglora_model[key] while iteratinglora_model.items() can be fragile. Iterate over a materialized list instead.
  • Assert row count is even before splitting; otherwise a silent half-split can corrupt weights.
  • The extra.clone() is not needed;torch.cat allocates a fresh tensor.

Apply this diff to harden the preprocessing:

-        def preprocess_lora_weights(lora_model, model_config):-            # Swap weights of gate_up_proj-            if getattr(model_config, "swap_gate_up_proj_lora_b_weight", True):-                for key, value in lora_model.items():-                    if "gate_up_proj.lora_B.weight" in key:-                        original_weights = value.contiguous().clone()-                        half_split = original_weights.shape[0] // 2-                        first_half = original_weights[:half_split, :]-                        second_half = original_weights[half_split:, :]-                        value = torch.cat((second_half, first_half), dim=0)-                        lora_model[key] = value-            return lora_model+        def preprocess_lora_weights(lora_model, model_config):+            # Swap rows for gate_up_proj.lora_B.weight (gate | up ordering)+            if getattr(model_config, "swap_gate_up_proj_lora_b_weight", True):+                for key, value in list(lora_model.items()):+                    if "gate_up_proj.lora_B.weight" in key:+                        w = value.contiguous()+                        rows = w.shape[0]+                        assert rows % 2 == 0, (+                            f"Expected even row count for {key}, got {rows}"+                        )+                        half = rows // 2+                        first_half = w[:half, :]+                        second_half = w[half:, :]+                        swapped = torch.cat((second_half, first_half), dim=0)+                        lora_model[key] = swapped+            return lora_model
tensorrt_llm/lora_helper.py (3)

1-15:Update SPDX year range to include 2025.

Repo guideline says to prepend NVIDIA copyright header (current year). Please bump to 2025.

Apply:

-# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.+# SPDX-FileCopyrightText: Copyright (c) 2022-2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.

22-41:Avoid duplicating “missing QKV” logic; reuse the manager’s single source of truth.

This function mirrorsLoraManager.get_missing_qkv_modules. Maintaining two implementations risks divergence.

Consider importing and delegating:

-from typing import Dict, List, Optional+from typing import Dict, List, Optional+from .lora_manager import LoraManager@@-def get_missing_qkv_modules_from_lora_modules(-        lora_target_modules: List[str]) -> List[str]:+def get_missing_qkv_modules_from_lora_modules(+        lora_target_modules: List[str]) -> List[str]:@@-    missing_qkv_modules = []-    if any(x in lora_target_modules for x in ["attn_q", "attn_k", "attn_v"]):-        for lora_module in ["attn_q", "attn_k", "attn_v"]:-            if lora_module not in lora_target_modules:-                missing_qkv_modules.append(lora_module)-    if any(x in lora_target_modules-           for x in ["cross_attn_q", "cross_attn_k", "cross_attn_v"]):-        for lora_module in ["cross_attn_q", "cross_attn_k", "cross_attn_v"]:-            if lora_module not in lora_target_modules:-                missing_qkv_modules.append(lora_module)-    return missing_qkv_modules+    return LoraManager.get_missing_qkv_modules(lora_target_modules)

43-59:De-duplicate default module mapping; import from a single location.

A second copy of the TRT-LLM↔HF mapping is hard to keep in sync (e.g., new modules likemlp_gate_up). Prefer re-exporting the mapping fromlora_manager.py.

For example:

-from ._utils import DictConversion+from ._utils import DictConversion+from .lora_manager import get_default_trtllm_modules_to_hf_modules as _default_map@@-def get_default_trtllm_modules_to_hf_modules():-    """Get default mapping from TensorRT-LLM module names to HuggingFace module names."""-    return {-        "attn_q": "q_proj",-        "attn_k": "k_proj",-        "attn_v": "v_proj",-        "attn_dense": "o_proj",-        "mlp_h_to_4h": "gate_proj",-        "mlp_4h_to_h": "down_proj",-        "mlp_gate": "up_proj",-        "mlp_gate_up": "gate_up_proj",-        "moe_h_to_4h": "w1",-        "moe_4h_to_h": "w2",-        "moe_gate": "w3",-        "moe_router": "gate",-    }+def get_default_trtllm_modules_to_hf_modules():+    """Get default mapping from TensorRT-LLM module names to HuggingFace module names."""+    return _default_map()
tensorrt_llm/_torch/models/modeling_phi4mm.py (1)

265-286:LoRA requests per modality — LGTM with a minor suggestion.

The static helper returns consistentLoRARequests for image/audio modalities. Minor nit: use_ for the throwaway loop variable.

Apply:

-                ) for i in range(num_requests)+                ) for _ in range(num_requests)
📜 Review details

Configuration used: Path: .coderabbit.yaml

Review profile: CHILL

Plan: Pro

💡 Knowledge Base configuration:

  • MCP integration is disabled by default for public repositories
  • Jira integration is disabled by default for public repositories
  • Linear integration is disabled by default for public repositories

You can enable these sources in your CodeRabbit configuration.

📥 Commits

Reviewing files that changed from the base of the PR and betweenf4adb25 and78dc18b.

📒 Files selected for processing (8)
  • tensorrt_llm/_torch/models/modeling_phi4mm.py (1 hunks)
  • tensorrt_llm/_torch/pyexecutor/_util.py (1 hunks)
  • tensorrt_llm/_torch/pyexecutor/model_engine.py (1 hunks)
  • tensorrt_llm/_torch/pyexecutor/resource_manager.py (1 hunks)
  • tensorrt_llm/lora_helper.py (1 hunks)
  • tensorrt_llm/lora_manager.py (4 hunks)
  • tests/integration/defs/perf/pytorch_model_config.py (1 hunks)
  • tests/integration/defs/test_e2e.py (1 hunks)
🚧 Files skipped from review as they are similar to previous changes (4)
  • tensorrt_llm/_torch/pyexecutor/model_engine.py
  • tensorrt_llm/_torch/pyexecutor/_util.py
  • tensorrt_llm/_torch/pyexecutor/resource_manager.py
  • tests/integration/defs/perf/pytorch_model_config.py
🧰 Additional context used
📓 Path-based instructions (2)
**/*.py

📄 CodeRabbit inference engine (CODING_GUIDELINES.md)

**/*.py: Python code must target Python 3.8+
Python indentation: 4 spaces, no tabs
Maintain module namespace in imports (from package.subpackage import foo; then use foo.SomeClass())
Python file names use snake_case
Python class names use PascalCase
Python functions/methods and local variables use snake_case; variables starting with a number get k_ prefix (e.g., k_99th_percentile)
Global variables use G_ prefixed UPPER_SNAKE_CASE (e.g., G_MY_GLOBAL)
Constants use UPPER_SNAKE_CASE in Python
Avoid shadowing variables from outer scopes in Python
Initialize all externally visible members of a Python class ininit
Prefer docstrings for interfaces used outside a file; comments for local code
Use Google-style docstrings for classes and functions (Sphinx-parsable)
Document attributes/variables inline with short docstrings
Avoid reflection when simple alternatives exist (e.g., prefer explicit parameters over dict(**locals()))
In try/except, catch the narrowest exceptions possible
For duck-typing with try/except, keep try body minimal and put logic in else

Files:

  • tensorrt_llm/lora_manager.py
  • tensorrt_llm/lora_helper.py
  • tests/integration/defs/test_e2e.py
  • tensorrt_llm/_torch/models/modeling_phi4mm.py
**/*.{cpp,cxx,cc,cu,h,hpp,hxx,hh,cuh,py}

📄 CodeRabbit inference engine (CODING_GUIDELINES.md)

Prepend NVIDIA copyright header (current year) to all source files

Files:

  • tensorrt_llm/lora_manager.py
  • tensorrt_llm/lora_helper.py
  • tests/integration/defs/test_e2e.py
  • tensorrt_llm/_torch/models/modeling_phi4mm.py
⏰ Context from checks skipped due to timeout of 90000ms. You can increase the timeout in your CodeRabbit configuration to a maximum of 15 minutes (900000ms). (1)
  • GitHub Check: Pre-commit Check
🔇 Additional comments (7)
tensorrt_llm/lora_manager.py (2)

1053-1053:HF LoRA path preprocess hook — LGTM.

The guarded call topreprocess_lora_weights(lora_model, model_config) keeps HF-loading compatible across models while allowing Phi4MM to disable swapping.


244-244:swap_gate_up_proj_lora_b_weight flag fully propagated and verified
All instantiations, defaults, mappings, and tests correctly include or reference the newswap_gate_up_proj_lora_b_weight flag. No missing call sites or mappings were found.

tensorrt_llm/lora_helper.py (1)

61-80:LoRA dispatcher wrapper — LGTM.

The thin wrapper keeps call sites simple and preserves the existing public API.

tests/integration/defs/test_e2e.py (2)

2489-2491:Updated image expected keywords for Phi4MM — LGTM.

The new tokens reflect the revised LoRA targets/mappings and match the updated modality behavior.


2497-2498:Updated image_audio expected keywords for Phi4MM — LGTM.

Consistent with the modality handling changes.

tensorrt_llm/_torch/models/modeling_phi4mm.py (2)

259-261:Disable swap of gate_up_proj.lora_B.weight for Phi4MM — correct model-specific override.

Default is True globally; Phi4MM sets it to False here, which matches the intended accuracy fix.


246-257:✅ Confirmed mlp_gate_up registration and mapping
The LoRA target modules and mappings inmodeling_phi4mm.py correctly use"mlp_gate_up""gate_up_proj", and we’ve verified thatLORA_MODULE_IDS inlora_manager.py includes

  • "mlp_gate_up": 18

No further changes needed.

@Wanli-JiangWanli-Jiangforce-pushed theuser/williamj/fix-phi4mm-lora-rc branch from78dc18b toc4791f9CompareAugust 22, 2025 06:31
Signed-off-by: Wanli Jiang <35160485+Wanli-Jiang@users.noreply.github.com>
@Wanli-JiangWanli-Jiangforce-pushed theuser/williamj/fix-phi4mm-lora-rc branch fromc4791f9 to7e4974bCompareAugust 22, 2025 06:31
@Wanli-JiangWanli-Jiang changed the title[TRTLLM-6825][fix] Update lora for phi4-mm (#6817)[TRTLLM-6825][fix] Update lora for phi4-mmAug 22, 2025
@Wanli-Jiang
Copy link
CollaboratorAuthor

/bot run

@tensorrt-cicd
Copy link
Collaborator

PR_Github #16139 [ run ] triggered by Bot

@tensorrt-cicd
Copy link
Collaborator

PR_Github #16136 [ run ] completed with stateABORTED

@tensorrt-cicd
Copy link
Collaborator

PR_Github #16139 [ run ] completed with stateSUCCESS
/LLM/release-1.0/L0_MergeRequest_PR pipeline #260 completed with status: 'FAILURE'

@Wanli-Jiang
Copy link
CollaboratorAuthor

/bot run

@tensorrt-cicd
Copy link
Collaborator

PR_Github #16171 [ run ] triggered by Bot

@tensorrt-cicd
Copy link
Collaborator

PR_Github #16171 [ run ] completed with stateSUCCESS
/LLM/release-1.0/L0_MergeRequest_PR pipeline #263 completed with status: 'SUCCESS'

@Wanli-JiangWanli-Jiang merged commit036c3dd intoNVIDIA:release/1.0Aug 23, 2025
5 checks passed
yuanjingx87 pushed a commit that referenced this pull requestAug 28, 2025
Signed-off-by: Wanli Jiang <35160485+Wanli-Jiang@users.noreply.github.com>
Sign up for freeto join this conversation on GitHub. Already have an account?Sign in to comment

Reviewers

@coderabbitaicoderabbitai[bot]coderabbitai[bot] left review comments

@chzblychchzblychchzblych approved these changes

Assignees

No one assigned

Labels

None yet

Projects

None yet

Milestone

No milestone

Development

Successfully merging this pull request may close these issues.

3 participants

@Wanli-Jiang@tensorrt-cicd@chzblych

[8]ページ先頭

©2009-2025 Movatter.jp