Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up

Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image

License

NotificationsYou must be signed in to change notification settings

Mps24-7uk/NonCuboidRoom

 
 

Repository files navigation

Paper

Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image

Cheng Yang*,Jia Zheng*,Xili Dai,Rui Tang,Yi Ma,Xiaojun Yuan.

IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2022

[Preprint][Supplementary Material]

(*: Equal contribution)

Installation

The code is tested with Ubuntu 16.04, PyTorch v1.5, CUDA 10.1 and cuDNN v7.6.

# create conda envconda create -n layout python=3.6# activate conda envconda activate layout# install pytorchconda install pytorch==1.5.0 torchvision==0.6.0 cudatoolkit=10.1 -c pytorch# install dependenciespip install -r requirements.txt

Data Preparation

Structured3D Dataset

Please downloadStructured3D dataset and our processed2D line annotations. The directory structure should look like:

data└── Structured3D    │── Structured3D    │   ├── scene_00000    │   ├── scene_00001    │   ├── scene_00002    │   └── ...    └── line_annotations.json

SUN RGB-D Dataset

Please downloadSUN RGB-D dataset, our processed2D line annotation for SUN RGB-D dataset, andlayout annotations of NYUv2 303 dataset. The directory structure should look like:

data└── SUNRGBD    │── SUNRGBD    │    ├── kv1    │    ├── kv2    │    ├── realsense    │    └── xtion    │── sunrgbd_train.json      // our extracted 2D line annotations of SUN RGB-D train set    │── sunrgbd_test.json       // our extracted 2D line annotations of SUN RGB-D test set    └── nyu303_layout_test.npz  // 2D ground truth layout annotations provided by NYUv2 303 dataset

Pre-trained Models

You can download our pre-trained models here:

  • The model trained on Structured3D dataset.
  • The model trained on SUN RGB-D dataset and NYUv2 303 dataset.

Structured3D Dataset

To train the model on the Structured3D dataset, run this command:

python train.py --model_name s3d --data Structured3D

To evaluate the model on the Structured3D dataset, run this command:

python test.py --pretrained DIR --data Structured3D

NYUv2 303 Dataset

To train the model on the SUN RGB-D dataset and NYUv2 303 dataset, run this command:

# first fine-tune the model on the SUN RGB-D datasetpython train.py --model_name sunrgbd --data SUNRGBD --pretrained Structure3D_DIR --split all --lr_step []# Then fine-tune the model on the NYUv2 subsetpython train.py --model_name nyu --data SUNRGBD --pretrained SUNRGBD_DIR --split nyu --lr_step [] --epochs 10

To evaluate the model on the NYUv2 303 dataset, run this command:

python test.py --pretrained DIR --data NYU303

Inference on the customized data

To predict the results of customized images, run this command:

python test.py --pretrained DIR --data CUSTOM

Citation

@inproceedings{NonCuboidRoom,title     ={Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image},author    ={Cheng Yang and              Jia Zheng and              Xili Dai and              Rui Tang and              Yi Ma and              Xiaojun Yuan},booktitle ={WACV},year      ={2022}}

LICENSE

The code is released under theMIT license. Portions of the code are borrowed fromHRNet-Object-Detection andCenterNet.

Acknowledgements

We would like to thankLei Jin for providing us the code for parsing the layout annotations in SUN RGB-D dataset.

About

Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python100.0%

[8]ページ先頭

©2009-2025 Movatter.jp