Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

NMS代码 #37

Open
Open
@MiaoRain

Description

@MiaoRain
class TreeNode:    def __init__(self, x):        self.val = x        self.left = None        self.right = Noneimport numpy as np# 输入: dets为候选框; thresh为iou阈值# 返回值 keepdef nms(dets, thresh):    x1 = dets[:, 0]    y1 = dets[:, 1]    x2 = dets[:, 2]    y2 = dets[:, 3]    scores = dets[:, -1]    order = np.argsort(scores)[::-1] # 排序后的索引,由大到小    areas = (x2-x1) * (y2-y1)    # print(areas)    # 最后保留的结果    keep = []    while order.size > 0:        i = order[0] # 取出置信度最高的窗口        keep.append(i)        # 计算窗口i 和其他所有窗口 交叠部分面积        xx1 = np.maximum(x1[i], x1[order[1:]])        yy1 = np.maximum(y1[i], y1[order[1:]])        xx2 = np.minimum(x2[i], x2[order[1:]])        yy2 = np.minimum(y2[i], y2[order[1:]])        w = np.maximum(0.0, xx2 - xx1)        h = np.maximum(0.0, yy2 - yy1)        inter = w * h        # 计算交并比iou        ovr = inter / ( areas[i] + areas[order[1:] ] - inter )        print(ovr)        # inds 为 所有与窗口i的iou值小于threshold值的索引        # np.where返回值为tuple,*[0]才为真正想要的数据        inds = np.where(ovr <= thresh)[0]        print("IOU合并 ", i, order[np.where(ovr > thresh)[0]+1])        # 因为窗口i代表自身,inds + 1即可对应于order中那些不满足条件的窗口索引位置        order = order[inds + 1]    return dets[keep]import cv2 as cvimport numpy as npimport nmsboxes = [[200, 200, 400, 400, 0.99],         [220, 220, 420, 420, 0.9],         [100, 100, 150, 150, 0.82],         [200, 240, 400, 440, 0.5],         [150, 250, 300, 400, 0.88]]boxes = np.array(boxes)overlap = 0.6 # 阈值pick = nms.nms(boxes, overlap)print(pick)###canvas = np.zeros((500, 500, 3), dtype='uint8')color = (0, 255, 255)for box in boxes:    x1, y1, x2, y2, _ = map(int, box)    cv.rectangle(canvas, (x1, y1), (x2, y2), color, 5)color = (255, 0, 255)for box in pick:    # print(box)    x1, y1, x2, y2, _ = map(int, box)    cv.rectangle(canvas, (x1, y1), (x2, y2), color, 2)cv.imwrite("result.png", canvas)cv.imshow('nms', canvas)cv.waitKey()

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions


      [8]ページ先頭

      ©2009-2025 Movatter.jp