Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up

OpenChem: Deep Learning toolkit for Computational Chemistry and Drug Design Research

License

NotificationsYou must be signed in to change notification settings

Mariewelt/OpenChem

Repository files navigation

OpenChem

OpenChem

OpenChem is a deep learning toolkit for Computational Chemistry withPyTorch backend. The goal of OpenChem is to make Deep Learning models an easy-to-use tool for Computational Chemistry and Drug Design Researchers.

Main features

  • Modular design with unified API, modules can be easily combined with each other.
  • OpenChem is easy-to-use: new models are built with only configuration file.
  • Fast training with multi-gpu support.
  • Utilities for data preprocessing.
  • Tensorboard support.

Documentation

Check out OpenChem documentationhere.

Supported functionality

Tasks:

  • Classification (binary or multi-class)
  • Regression
  • Multi-task (such as N binary classification tasks)
  • Generative models

Data types

  • Sequences of characters such as SMILES strings or amino-acid sequences
  • Molecular graphs. OpenChem takes care of converting SMILES strings into molecular graphs

Modules:

  • Token embeddings
  • Recurrent neural network encoders
  • Graph convolution neural network encoders
  • Multi-layer perceptrons

We are working on populating OpenChem with more models and other building blocks.

Installation

Requirements

In order to get started you need:

General installation

If you installed your Python with Anaconda you can run the following commands to get started:

git clone https://github.com/Mariewelt/OpenChem.gitcd OpenChemconda create --name OpenChem python=3.7conda activate OpenChemconda install --yes --file requirements.txtconda install -c rdkit rdkit nox cairoconda install pytorch torchvision -c pytorchpip install -e.

If your CUDA version is older than 9.0, checkPytorch website for different installation instructions.

Installation with Docker

Alternative way of installation is with Docker. We provide a Dockerfile, so you can run your models in a container that already has all the necessary packages installed. You will also need nvidia-docker in order to run models on GPU.

Publications

If you use OpenChem in your projects, please cite:

Korshunova, Maria, et al. "OpenChem: A Deep Learning Toolkit for Computational Chemistry and Drug Design." Journal of Chemical Information and Modeling 61.1 (2021): 7-13.

MolecularRNN model paper:

Popova, Mariya, et al. "MolecularRNN: Generating realistic molecular graphs with optimized properties." arXiv preprint arXiv:1905.13372 (2019).

Acknowledgements

OpenChem was supported byCarnegie Mellon University,the University of North Carolina at Chapel Hill andNVIDIA Corp.

CMU
UNCNVIDIA


[8]ページ先頭

©2009-2025 Movatter.jp