Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Reimplementation of CycleGAN

License

NotificationsYou must be signed in to change notification settings

LynnHo/CycleGAN-Tensorflow-2

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

45 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

News



CycleGAN - Tensorflow 2

Tensorflow 2 implementation of CycleGAN.

Paper:Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

Author:Jun-Yan Zhuet al.

Exemplar results

summer2winter

row 1: summer -> winter -> reconstructed summer, row 2: winter -> summer -> reconstructed winter

horse2zebra

row 1: horse -> zebra -> reconstructed horse, row 2: zebra -> horse -> reconstructed zebra

apple2orange

row 1: apple -> orange -> reconstructed apple, row 2: orange -> apple -> reconstructed orange

Usage

  • Environment

    • Python 3.6

    • TensorFlow 2.2, TensorFlow Addons 0.10.0

    • OpenCV, scikit-image, tqdm, oyaml

    • we recommendAnaconda orMiniconda, then you can create the TensorFlow 2.2 environment with commands below

      conda create -n tensorflow-2.2 python=3.6source activate tensorflow-2.2conda install scikit-image tqdm tensorflow-gpu=2.2conda install -c conda-forge oyamlpip install tensorflow-addons==0.10.0
    • NOTICE: if you create a new conda environment, remember to activate it before any other command

      source activate tensorflow-2.2
  • Dataset

    • download the summer2winter dataset

      sh ./download_dataset.sh summer2winter_yosemite
    • download the horse2zebra dataset

      sh ./download_dataset.sh horse2zebra
    • seedownload_dataset.sh for more datasets

  • Example of training

    CUDA_VISIBLE_DEVICES=0 python train.py --dataset summer2winter_yosemite
    • tensorboard for loss visualization

      tensorboard --logdir ./output/summer2winter_yosemite/summaries --port 6006
  • Example of testing

    CUDA_VISIBLE_DEVICES=0 python test.py --experiment_dir ./output/summer2winter_yosemite

[8]ページ先頭

©2009-2025 Movatter.jp