Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up

OpenMMLab Semantic Segmentation Toolbox and Benchmark.

License

NotificationsYou must be signed in to change notification settings

LUSSeg/mmsegmentation

 
 

Repository files navigation

English |简体中文

Introduction

MMSegmentation is an open source semantic segmentation toolbox based on PyTorch.It is a part of theOpenMMLab project.

The master branch works withPyTorch 1.5+.

demo image

Major features
  • Unified Benchmark

    We provide a unified benchmark toolbox for various semantic segmentation methods.

  • Modular Design

    We decompose the semantic segmentation framework into different components and one can easily construct a customized semantic segmentation framework by combining different modules.

  • Support of multiple methods out of box

    The toolbox directly supports popular and contemporary semantic segmentation frameworks,e.g. PSPNet, DeepLabV3, PSANet, DeepLabV3+, etc.

  • High efficiency

    The training speed is faster than or comparable to other codebases.

What's New

💎 Stable version

v0.30.0 was released on 01/11/2023:

  • Add 'Projects/' folder, and the first example project
  • Support Delving into High-Quality Synthetic Face Occlusion Segmentation Datasets

Please refer tochangelog.md for details and release history.

🌟 Preview of 1.x version

A brand new version ofMMSegmentation v1.0.0rc3 was released in 12/31/2022:

  • Unifies interfaces of all components based onMMEngine.
  • Faster training and testing speed with complete support of mixed precision training.
  • Refactored and more flexiblearchitecture.

Find more new features in1.x branch. Issues and PRs are welcome!

Installation

Please refer toget_started.md for installation anddataset_prepare.md for dataset preparation.

Get Started

Please seetrain.md andinference.md for the basic usage of MMSegmentation.There are also tutorials for:

A Colab tutorial is also provided. You may preview the notebookhere or directlyrun on Colab.

Benchmark and model zoo

Results and models are available in themodel zoo.

Supported backbones:

Supported methods:

Supported datasets:

FAQ

Please refer toFAQ for frequently asked questions.

Contributing

We appreciate all contributions to improve MMSegmentation. Please refer toCONTRIBUTING.md for the contributing guideline.

Acknowledgement

MMSegmentation is an open source project that welcome any contribution and feedback.We wish that the toolbox and benchmark could serve the growing researchcommunity by providing a flexible as well as standardized toolkit to reimplement existing methodsand develop their own new semantic segmentation methods.

Citation

If you find this project useful in your research, please consider cite:

@misc{mmseg2020,title={{MMSegmentation}: OpenMMLab Semantic Segmentation Toolbox and Benchmark},author={MMSegmentation Contributors},howpublished ={\url{https://github.com/open-mmlab/mmsegmentation}},year={2020}}

License

MMSegmentation is released under the Apache 2.0 license, while some specific features in this library are with other licenses. Please refer toLICENSES.md for the careful check, if you are using our code for commercial matters.

Projects in OpenMMLab

  • MMCV: OpenMMLab foundational library for computer vision.
  • MIM: MIM installs OpenMMLab packages.
  • MMClassification: OpenMMLab image classification toolbox and benchmark.
  • MMDetection: OpenMMLab detection toolbox and benchmark.
  • MMDetection3D: OpenMMLab's next-generation platform for general 3D object detection.
  • MMYOLO: OpenMMLab YOLO series toolbox and benchmark.
  • MMRotate: OpenMMLab rotated object detection toolbox and benchmark.
  • MMSegmentation: OpenMMLab semantic segmentation toolbox and benchmark.
  • MMOCR: OpenMMLab text detection, recognition, and understanding toolbox.
  • MMPose: OpenMMLab pose estimation toolbox and benchmark.
  • MMHuman3D: OpenMMLab 3D human parametric model toolbox and benchmark.
  • MMSelfSup: OpenMMLab self-supervised learning toolbox and benchmark.
  • MMRazor: OpenMMLab model compression toolbox and benchmark.
  • MMFewShot: OpenMMLab fewshot learning toolbox and benchmark.
  • MMAction2: OpenMMLab's next-generation action understanding toolbox and benchmark.
  • MMTracking: OpenMMLab video perception toolbox and benchmark.
  • MMFlow: OpenMMLab optical flow toolbox and benchmark.
  • MMEditing: OpenMMLab image and video editing toolbox.
  • MMGeneration: OpenMMLab image and video generative models toolbox.
  • MMDeploy: OpenMMLab Model Deployment Framework.

About

OpenMMLab Semantic Segmentation Toolbox and Benchmark.

Resources

License

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python98.8%
  • Other1.2%

[8]ページ先頭

©2009-2025 Movatter.jp