1+ # LeetCode 第 4 号问题:寻找两个正序数组的中位数
2+
3+ > 本文首发于公众号「图解面试算法」,是 [图解 LeetCode ](<https://github.com/MisterBooo/LeetCodeAnimation>) 系列文章之一。
4+ >
5+ > 同步博客:https://www.algomooc.com
6+
7+ 题目来源于 LeetCode 上第 4 号问题:寻找两个正序数组的中位数。题目难度为 Hard,目前通过率为 29.0% 。
8+
9+ #### 题目描述
10+
11+ > 给定两个大小为 m 和 n 的正序(从小到大)数组 nums1 和 nums2。
12+ 请你找出这两个正序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n))。
13+ 你可以假设 nums1 和 nums2 不会同时为空。
14+
15+ ```java
16+ 示例1:
17+ nums1 = [1, 3]
18+ nums2 = [2]
19+
20+ 则中位数是 2.0
21+
22+ 示例2:
23+ nums1 = [1, 2]
24+ nums2 = [3, 4]
25+
26+ 则中位数是 (2 + 3)/2 = 2.5
27+ ```
28+
29+ #### 题目解析
30+ 这道题网络上的解析都非常“高深”,很难理解。私以为它们都将简单的问题复杂化了。本题在一些处理上确实会有些麻烦,比如数组边界的处理,和偶数个数的中位数的处理。但其核心思想并不复杂。
31+
32+ 首先,我们可以只考虑数字总个数为奇数的情况。让我们看下下图:
33+
34+ 
35+
36+ 蓝框是中位数左边的数(包括中位数),而橘框则为中位数右边的数。
37+
38+ 3个显然的规则:
39+ 1.两个数组的蓝框总个数=(数字总个数+1)/2;
40+ 2.所有蓝框内的数都小于橘框内的数
41+ 3.中位数为蓝框中最大的那一位(即数组1蓝框最后一位,或数组2蓝框最后一位)
42+ 
43+ 如图,我们要找到一组A,B,满足上面3条规则。
44+ 对于规则1,我们在数组1中找任意A,然后根据规则1就能推算出对应的B的位置。
45+ 对于规则2,由于数组1和2都是有序数组,即X1<A<Y1;X2<B<Y2。我们实际上只需要判断A是否小于Y2,以及B是否小于Y2。
46+ 对于规则3,由于数组1和2都是有序数组,因此中位数为A,B中较大的那一项。
47+
48+ 那么具体该如何操作呢?
49+ 由于数组1和2都是有序数组,且题目要求O(log(m+n))复杂度,我们明显应考虑二分法。
50+
51+ **情况1:**
52+
53+ 
54+ 首先,我们选择数组1进行操作。取其中间值9 。(因此 A=9) 根据规则1,我们在数组2中找到对应值(B = 4)。(一共有11个数,(11+1) / 2 = 6,因此蓝色框总数为6)
55+ 紧接着,我们根据规则2判断A(9)是否小于B.next(5),以及B(4)是否小于A.next(11)。
56+ 显然,A比B.next,也就是一个橘框还要大。这是不允许的。可见A只能取比9更小的数字了。如果取更大的数字,那B就会更小,更不可能满足规则2。所以这种情况下我们要向左进行二分。
57+
58+ **情况2:**
59+
60+ 
61+ 这种情况下B比A.next,也就是一个橘框还要大。这是不允许的。可见A只能取比9更大的数字了。如果取更小的数字,那B就会更大,更不可能满足规则2。所以这种情况下我们要向右进行二分。
62+
63+ **情况3:**
64+
65+ 
66+ 随着我们不断地二分,中位数显然必然会出现。
67+ 如图上这种情况,A小于B.next,且B小于A.next。
68+ 那么,显然,A,B中较大的那一项就是中位数(规则3)。
69+
70+ 本题算法的核心思想就是这样简单。此外,当数字总数为偶数时,我们需要把我们求得的“中位数"与它下一项相加并除以2即可。由于本题中数字可能相同,所以大小的比较需要使用>=和<=。
71+ 下面提供了作者的一份代码,leetcode上的结果为:执行用时:2 ms;内存消耗:40.3 MB,都超过了100%的用户。读者可以参考一下。
72+
73+
74+ #### 代码实现
75+
76+ Java语言
77+
78+ ```java
79+ public class Solution {
80+ public double findMedianSortedArrays(int[] nums1, int[] nums2) {
81+ // 使nums1成为较短数组,不仅可以提高检索速度,同时可以避免一些边界问题
82+ if (nums1.length > nums2.length) {
83+ int[] temp = nums1;
84+ nums1 = nums2;
85+ nums2 = temp;
86+ }
87+
88+ int len1 = nums1.length;
89+ int len2 = nums2.length;
90+ int leftLen = (len1 + len2 + 1) / 2; //两数组合并&排序后,左半边的长度
91+
92+ // 对数组1进行二分检索
93+ int start = 0;
94+ int end = len1;
95+ while (start <= end) {
96+ // 两个数组的被测数A,B的位置(从1开始计算)
97+ // count1 = 2 表示 num1 数组的第2个数字
98+ // 比index大1
99+ int count1 = start + ((end - start) / 2);
100+ int count2 = leftLen - count1;
101+
102+ if (count1 > 0 && nums1[count1 - 1] > nums2[count2]) {
103+ // A比B的next还要大
104+ end = count1 - 1;
105+ } else if (count1 < len1 && nums2[count2 - 1] > nums1[count1]) {
106+ // B比A的next还要大
107+ start = count1 + 1;
108+ } else {
109+ // 获取中位数
110+ int result = (count1 == 0)? nums2[count2 - 1]: // 当num1数组的数都在总数组右边
111+ (count2 == 0)? nums1[count1 - 1]: // 当num2数组的数都在总数组右边
112+ Math.max(nums1[count1 - 1], nums2[count2 - 1]); // 比较A,B
113+ if (isOdd(len1 + len2)) {
114+ return result;
115+ }
116+
117+ // 处理偶数个数的情况
118+ int nextValue = (count1 == len1) ? nums2[count2]:
119+ (count2 == len2) ? nums1[count1]:
120+ Math.min(nums1[count1], nums2[count2]);
121+ return (result + nextValue) / 2.0;
122+ }
123+ }
124+
125+ return Integer.MIN_VALUE; // 绝对到不了这里
126+ }
127+
128+ // 奇数返回true,偶数返回false
129+ private boolean isOdd(int x) {
130+ return (x & 1) == 1;
131+ }
132+ }
133+ ```
134+
135+ #### 动画理解
136+
137+ 
138+
139+ #### 复杂度分析
140+
141+ + 时间复杂度:对数组进行二分查找,因此为O(logN)
142+ + 空间复杂度:O(1)
143+
144+
145+
146+
147+
148+ ```
149+ 
150+ ```