- Notifications
You must be signed in to change notification settings - Fork3
Single cell ANANSE Gene-regulatory-network analysis from Seurat objects
License
JGASmits/AnanseSeurat
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Repository files navigation
TheAnanseSeurat package takes pre-processed clustered single cellobjects of scRNAseq and scATACseq or a multiome combination, andgenerates files for gene regulatory network (GRN) analysis. It is partof the scANANSE pipeline.https://doi.org/10.12688/f1000research.130530.1
AnanseSeurat can be installed from CRAN using
install.packages('AnanseSeurat')Or to install the developmental branch from github:
library(devtools)# Tools to Make Developing R Packages Easier # Tools to Make Developing R Packages EasierSys.unsetenv("GITHUB_PAT")remotes::install_github("JGASmits/AnanseSeurat@main")
library("AnanseSeurat")rds_file<-'./scANANSE/preprocessed_PDMC.Rds'pbmc<- readRDS(rds_file)
Next you can output the data from your single cell object, the fileformat, config file and sample file are all ready to automate GRNanalysis usinganansnake.https://github.com/vanheeringen-lab/anansnake
export_CPM_scANANSE(pbmc,min_cells=25,output_dir='./scANANSE/analysis',cluster_id='predicted.id',RNA_count_assay='RNA')export_ATAC_scANANSE(pbmc,min_cells=25,output_dir='./scANANSE/analysis',cluster_id='predicted.id',ATAC_peak_assay='peaks')# Specify additional contrasts:contrasts<- c('B-naive_B-memory','B-memory_B-naive','B-naive_CD14-Mono','CD14-Mono_B-naive')config_scANANSE(pbmc,min_cells=25,output_dir='./scANANSE/analysis',cluster_id='predicted.id',additional_contrasts=contrasts)DEGS_scANANSE(pbmc,min_cells=25,output_dir='./scANANSE/analysis',cluster_id='predicted.id',additional_contrasts=contrasts)
Follow the instructions its respective github page,https://github.com/vanheeringen-lab/anansnake After activating theconda environment, use the generated files to run GRN analysis usingyour single cell cluster data:
anansnake \--configfile scANANSE/analysis/config.yaml \--resources mem_mb=48_000 --cores 12
After running Anansnake, you can import the TF influence scores backinto your single cell object of choice
pbmc<- import_seurat_scANANSE(pbmc,cluster_id='predicted.id',anansnake_inf_dir="./scANANSE/analysis/influence")TF_influence<- per_cluster_df(pbmc,cluster_id='predicted.id',assay='influence')
scANANSE gene regulatory network and motif analysis of single-cell clusters [version 1; peer review: awaiting peer review]Jos G.A. Smits, Julian A. Arts, Siebren Frölich, Rebecca R. Snabel, Branco M.H. Heuts, Joost H.A. Martens, Simon J van Heeringen, Huiqing ZhouF1000Research 2023, 12:243 (https://doi.org/10.12688/f1000research.130530.1)
- Julian A. Arts and his Pycharm equivalent of this packagehttps://github.com/Arts-of-coding/AnanseScanpy
- Siebren Frohlich and his anansnake implementationhttps://github.com/vanheeringen-lab/anansnake
- Rebecca R. Snabel for her implementation of the motif expressioncorrelation analysis
- Branco Heuts for testing
The hex sticker is generated using thehexSticker package.
About
Single cell ANANSE Gene-regulatory-network analysis from Seurat objects
Topics
Resources
License
Uh oh!
There was an error while loading.Please reload this page.
Stars
Watchers
Forks
Uh oh!
There was an error while loading.Please reload this page.
Contributors3
Uh oh!
There was an error while loading.Please reload this page.
