Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Single cell ANANSE Gene-regulatory-network analysis from Seurat objects

License

NotificationsYou must be signed in to change notification settings

JGASmits/AnanseSeurat

Repository files navigation

R-CMD-checkcodecovCRAN_Status_Badge

TheAnanseSeurat package takes pre-processed clustered single cellobjects of scRNAseq and scATACseq or a multiome combination, andgenerates files for gene regulatory network (GRN) analysis. It is partof the scANANSE pipeline.https://doi.org/10.12688/f1000research.130530.1

Installation

AnanseSeurat can be installed from CRAN using

install.packages('AnanseSeurat')

Or to install the developmental branch from github:

library(devtools)# Tools to Make Developing R Packages Easier # Tools to Make Developing R Packages EasierSys.unsetenv("GITHUB_PAT")remotes::install_github("JGASmits/AnanseSeurat@main")

Usage

library("AnanseSeurat")rds_file<-'./scANANSE/preprocessed_PDMC.Rds'pbmc<- readRDS(rds_file)

Next you can output the data from your single cell object, the fileformat, config file and sample file are all ready to automate GRNanalysis usinganansnake.https://github.com/vanheeringen-lab/anansnake

export_CPM_scANANSE(pbmc,min_cells=25,output_dir='./scANANSE/analysis',cluster_id='predicted.id',RNA_count_assay='RNA')export_ATAC_scANANSE(pbmc,min_cells=25,output_dir='./scANANSE/analysis',cluster_id='predicted.id',ATAC_peak_assay='peaks')# Specify additional contrasts:contrasts<-  c('B-naive_B-memory','B-memory_B-naive','B-naive_CD14-Mono','CD14-Mono_B-naive')config_scANANSE(pbmc,min_cells=25,output_dir='./scANANSE/analysis',cluster_id='predicted.id',additional_contrasts=contrasts)DEGS_scANANSE(pbmc,min_cells=25,output_dir='./scANANSE/analysis',cluster_id='predicted.id',additional_contrasts=contrasts)

install and run anansnake

Follow the instructions its respective github page,https://github.com/vanheeringen-lab/anansnake After activating theconda environment, use the generated files to run GRN analysis usingyour single cell cluster data:

anansnake \--configfile scANANSE/analysis/config.yaml \--resources mem_mb=48_000 --cores 12

import ANANSE results back to your single cell object

After running Anansnake, you can import the TF influence scores backinto your single cell object of choice

pbmc<- import_seurat_scANANSE(pbmc,cluster_id='predicted.id',anansnake_inf_dir="./scANANSE/analysis/influence")TF_influence<- per_cluster_df(pbmc,cluster_id='predicted.id',assay='influence')

Citation

scANANSE gene regulatory network and motif analysis of single-cell clusters [version 1; peer review: awaiting peer review]Jos G.A. Smits, Julian A. Arts, Siebren Frölich, Rebecca R. Snabel, Branco M.H. Heuts, Joost H.A. Martens, Simon J van Heeringen, Huiqing ZhouF1000Research 2023, 12:243 (https://doi.org/10.12688/f1000research.130530.1)

Thanks to:

Credits

The hex sticker is generated using thehexSticker package.

About

Single cell ANANSE Gene-regulatory-network analysis from Seurat objects

Topics

Resources

License

Stars

Watchers

Forks

Contributors3

  •  
  •  
  •  

Languages


[8]ページ先頭

©2009-2025 Movatter.jp