Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings
This repository was archived by the owner on Feb 2, 2024. It is now read-only.
/sdcPublic archive

Numba extension for compiling Pandas data frames, Intel® Scalable Dataframe Compiler

License

NotificationsYou must be signed in to change notification settings

IntelPython/sdc

Intel® Scalable Dataframe Compiler

Travis CIAzure Pipelines

Numba* Extension For Pandas* Operations Compilation

Intel® Scalable Dataframe Compiler (Intel® SDC) is an extension ofNumba*that enables compilation ofPandas* operations. It automatically vectorizes and parallelizesthe code by leveraging modern hardware instructions and by utilizing all available cores.

Intel® SDC documentation can be foundhere.

Note

For maximum performance and stability, please use numba fromintel/label/beta channel.

Installing Binary Packages (conda and wheel)

Intel® SDC is available on the Anaconda Cloudintel/label/beta channel.Distribution includes Intel® SDC for Python 3.6 and Python 3.7 for Windows and Linux platforms.

Intel® SDC conda package can be installed using the steps below:

> conda create -n sdc-env python=<3.7 or 3.6> -c anaconda -c conda-forge> conda activate sdc-env> conda install sdc -c intel/label/beta -c intel -c defaults -c conda-forge --override-channels

Intel® SDC wheel package can be installed using the steps below:

> conda create -n sdc-env python=<3.7 or 3.6> pip -c anaconda -c conda-forge> conda activate sdc-env> pip install --index-url https://pypi.anaconda.org/intel/label/beta/simple --extra-index-url https://pypi.anaconda.org/intel/simple --extra-index-url https://pypi.org/simple sdc

Building Intel® SDC from Source on Linux

We useAnaconda distribution ofPython for setting up Intel® SDC build environment.

If you do not have conda, we recommend using Miniconda3:

wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh -O miniconda.shchmod +x miniconda.sh./miniconda.sh -bexport PATH=$HOME/miniconda3/bin:$PATH

Note

For maximum performance and stability, please use numba fromintel/label/beta channel.

It is possible to build Intel® SDC via conda-build or setuptools. Follow one of thecases below to install Intel® SDC and its dependencies on Linux.

Building on Linux with conda-build

PYVER=<3.6 or 3.7>NUMPYVER=<1.16 or 1.17>conda create -n conda-build-env python=$PYVER conda-buildsource activate conda-build-envgit clone https://github.com/IntelPython/sdc.gitcd sdcconda build --python $PYVER --numpy $NUMPYVER --output-folder=<output_folder> -c intel/label/beta -c defaults -c intel -c conda-forge --override-channels conda-recipe

Building on Linux with setuptools

export PYVER=<3.6 or 3.7>export NUMPYVER=<1.16 or 1.17>conda create -n sdc-env -q -y -c intel/label/beta -c defaults -c intel -c conda-forge python=$PYVER numpy=$NUMPYVER tbb-devel tbb4py numba=0.54.1 pandas=1.3.4 pyarrow=4.0.1 gcc_linux-64 gxx_linux-64source activate sdc-envgit clone https://github.com/IntelPython/sdc.gitcd sdcpython setup.py install

In case of issues, reinstalling in a new conda environment is recommended.

Building Intel® SDC from Source on Windows

Building Intel® SDC on Windows requires Build Tools for Visual Studio 2019 (with component MSVC v140 - VS 2015 C++ build tools (v14.00)):

It is possible to build Intel® SDC via conda-build or setuptools. Follow one of thecases below to install Intel® SDC and its dependencies on Windows.

Building on Windows with conda-build

set PYVER=<3.6 or 3.7>set NUMPYVER=<1.16 or 1.17>conda create -n conda-build-env -q -y python=%PYVER% conda-build conda-verify vc vs2015_runtime vs2015_win-64conda activate conda-build-envgit clone https://github.com/IntelPython/sdc.gitcd sdcconda build --python %PYVER% --numpy %NUMPYVER% --output-folder=<output_folder> -c intel/label/beta -c defaults -c intel -c conda-forge --override-channels conda-recipe

Building on Windows with setuptools

set PYVER=<3.6 or 3.7>set NUMPYVER=<1.16 or 1.17>conda create -n sdc-env -c intel/label/beta -c defaults -c intel -c conda-forge python=%PYVER% numpy=%NUMPYVER% tbb-devel tbb4py numba=0.54.1 pandas=1.3.4 pyarrow=4.0.1conda activate sdc-envset INCLUDE=%INCLUDE%;%CONDA_PREFIX%\Library\includeset LIB=%LIB%;%CONDA_PREFIX%\Library\libgit clone https://github.com/IntelPython/sdc.gitcd sdcpython setup.py install

Troubleshooting Windows Build

  • If thecl compiler throws the error fatalerror LNK1158: cannot run 'rc.exe',add Windows Kits to your PATH (e.g.C:\Program Files (x86)\Windows Kits\8.0\bin\x86).
  • Some errors can be mitigated byset DISTUTILS_USE_SDK=1.
  • For setting up Visual Studio, one might need go to registry atHKEY_LOCAL_MACHINE\SOFTWARE\WOW6432Node\Microsoft\VisualStudio\SxS\VS7,and add a string value named14.0 whose data isC:\Program Files (x86)\Microsoft Visual Studio 14.0\.
  • Sometimes if the conda version or visual studio version being used are not latest thenbuilding Intel® SDC can throw some vague error about a keyword used in a file.So make sure you are using the latest versions.

Building documentation

Building Intel® SDC User's Guide documentation requires pre-installed Intel® SDC packagealong with compatiblePandas* version as well asSphinx* 2.2.1 or later.

Intel® SDC documentation includes Intel® SDC examples output which is pasted to functions description in the API Reference.

Usepip to installSphinx* and extensions:

pip install sphinx sphinxcontrib-programoutput

Currently the build precedure is based onmake located at./sdc/docs/ folder.While it is not generally required we recommended that you clean up the system from previous documentaiton build by running:

make clean

To build HTML documentation you will need to run:

make html

The built documentation will be located in the./sdc/docs/build/html directory.To preview the documentation openindex.html file.

More information about building and adding documentation can be foundhere.

Running unit tests

python sdc/tests/gen_test_data.pypython -m unittest

References

Intel® SDC follows ideas and initial code base of High-Performance Analytics Toolkit (HPAT). These academic papers describe ideas and methods behind HPAT:

About

Numba extension for compiling Pandas data frames, Intel® Scalable Dataframe Compiler

Topics

Resources

License

Code of conduct

Security policy

Stars

Watchers

Forks

Packages

No packages published

Contributors28


[8]ページ先頭

©2009-2025 Movatter.jp