Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Adaptive Trial Simulator

License

NotificationsYou must be signed in to change notification settings

INCEPTdk/adaptr

Repository files navigation

CRAN statusR-CMD-checkstatuscodecovtotal downloads from RStudio mirror

Theadaptr package simulates adaptive (multi-arm, multi-stage)clinical trials using adaptive stopping, adaptive arm dropping and/orresponse-adaptive randomisation.

The package has been developed as part of theINCEPT (Intensive CarePlatform Trial) project, primarily supported by agrant fromSygeforsikringen “danmark”.

Resources

Examples:

Installation

The easiest way is to install from CRAN directly:

install.packages("adaptr")

Alternatively, you can install thedevelopment version from GitHub -this requires theremotes-package installed. The development versionmay contain additional features not yet available in the CRAN version,but may not be stable or fully documented:

# install.packages("remotes")remotes::install_github("INCEPTdk/adaptr@dev")

Usage and workflow overview

The central functionality ofadaptr and the typical workflow isillustrated here.

Setup

First, the package is loaded and a cluster of parallel workers isinitiated by thesetup_cluster() function to facilitate parallelcomputing:

library(adaptr)#> Loading 'adaptr' package v1.4.0.#> For instructions, type 'help("adaptr")'#> or see https://inceptdk.github.io/adaptr/.setup_cluster(2)

Specify trial design

Setup a trial specification (defining the trial design and scenario)using the generalsetup_trial() function, or one of the special casevariants using default priorssetup_trial_binom() (for binary,binomially distributed outcomes; used in this example) orsetup_trial_norm() (for continuous, normally distributed outcomes).

# Setup a trial using a binary, binomially distributed, undesirable outcomebinom_trial<- setup_trial_binom(arms= c("Arm A","Arm B","Arm C"),# Scenario with identical outcomes in all armstrue_ys= c(0.25,0.25,0.25),# Response-adaptive randomisation with minimum 20% allocation in all armsmin_probs= rep(0.20,3),# Number of patients with data available at each analysisdata_looks= seq(from=300,to=2000,by=100),# Number of patients randomised at each analysis (higher than the numbers# with data, except at last look, due to follow-up/data collection lag)randomised_at_looks= c(seq(from=400,to=2000,by=100),2000),# Stopping rules for inferiority/superiority not explicitly defined# Stop for equivalence at > 90% probability of differences < 5 %-pointsequivalence_prob=0.9,equivalence_diff=0.05)# Print trial specificationprint(binom_trial,prob_digits=3)#> Trial specification: generic binomially distributed outcome trial#> * Undesirable outcome#> * No common control arm#> * Best arms: Arm A and Arm B and Arm C#>#> Arms, true outcomes, starting allocation probabilities#> and allocation probability limits:#>   arms true_ys start_probs fixed_probs min_probs max_probs#>  Arm A    0.25       0.333          NA       0.2        NA#>  Arm B    0.25       0.333          NA       0.2        NA#>  Arm C    0.25       0.333          NA       0.2        NA#>#> Maximum sample size: 2000#> Maximum number of data looks: 18#> Planned data looks after:  300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000 patients have reached follow-up#> Number of patients randomised at each look:  400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2000#>#> Superiority threshold: 0.99 (all analyses)#> Inferiority threshold: 0.01 (all analyses)#> Equivalence threshold: 0.9 (all analyses) (no common control)#> Absolute equivalence difference: 0.05#> No futility threshold (not relevant - no common control)#> Soften power for all analyses: 1 (no softening)

Calibration

In the example trial specification, there are no true between-armdifferences, and stopping rules for inferiority and superiority are notexplicitly defined. This is intentional, as these stopping rules will becalibrated to obtain a desired probability of stopping for superiorityin the scenario with no between-arm differences (corresponding to theBayesian type 1 error rate). Trial specifications do not necessarilyhave to be calibrated, and simulations can be run directly using therun_trials() function covered below (orrun_trial() for a singlesimulation).

Calibration of a trial specification is done using thecalibrate_trial() function, which defaults to calibrate constant,symmetrical stopping rules for inferiority and superiority (expecting atrial specification with identical outcomes in each arm), but can beused to calibrate any parameter in a trial specification towards anyperformance metric.

# Calibrate the trial specificationcalibrated_binom_trial<- calibrate_trial(trial_spec=binom_trial,n_rep=1000,# 1000 simulations for each step (more generally recommended)base_seed=4131,# Base random seed (for reproducible results)target=0.05,# Target value for calibrated metric (default value)search_range= c(0.9,1),# Search range for superiority stopping thresholdtol=0.01,# Tolerance rangedir=-1# Tolerance range only applies below target)# Print result (to check if calibration is successful)calibrated_binom_trial#> Trial calibration:#> * Result: calibration successful#> * Best x: 0.9814318#> * Best y: 0.048#>#> Central settings:#> * Target: 0.05#> * Tolerance: 0.01 (at or below target, range: 0.04 to 0.05)#> * Search range: 0.9 to 1#> * Gaussian process controls:#> * - resolution: 5000#> * - kappa: 0.5#> * - pow: 1.95#> * - lengthscale: 1 (constant)#> * - x scaled: yes#> * Noisy: no#> * Narrowing: yes#>#> Calibration/simulation details:#> * Total evaluations: 7 (previous + grid + iterations)#> * Repetitions: 1000#> * Calibration time: 3.66 mins#> * Base random seed: 4131#>#> See 'help("calibrate_trial")' for details.

The calibration is successful - the calibrated, constant stoppingthreshold for superiority is printed with the results (0.9814318) andcan be extracted usingcalibrated_binom_trial$best_x. Using thedefault calibration functionality, the calibrated, constant stoppingthreshold for inferiority is symmetrical, i.e.,1 - stopping threshold for superiority (0.0185682). The calibratedtrial specification may be extracted usingcalibrated_binom_trial$best_trial_spec and, if printed, will alsoinclude the calibrated stopping thresholds.

Calibration results may be saved (and reloaded) by using thepathargument, to avoid unnecessary repeated simulations.

Summarising results

The results of the simulations using the calibrated trial specificationconducted during the calibration procedure may be extracted usingcalibrated_binom_trial$best_sims. These results can be summarised withseveral functions. Most of these functions support different ‘selectionstrategies’ for simulations not ending with superiority, i.e.,performance metrics can be calculated assuming different arms would beused in clinical practice if no arm is ultimately superior.

Thecheck_performance() function summarises performance metrics in atidydata.frame, with uncertainty measures (bootstrapped confidenceintervals) if requested. Here, performance metrics are calculatedconsidering the ‘best’ arm (i.e., the one with the highest probabilityof being overall best) selected in simulations not ending withsuperiority:

# Calculate performance metrics with uncertainty measuresbinom_trial_performance<- check_performance(calibrated_binom_trial$best_sims,select_strategy="best",uncertainty=TRUE,# Calculate uncertainty measuresn_boot=1000,# 1000 bootstrap samples (more typically recommended)ci_width=0.95,# 95% confidence intervals (default)boot_seed="base"# Use same random seed for bootstrapping as for simulations)# Print resultsprint(binom_trial_performance,digits=2)#>                   metric     est err_sd err_mad   lo_ci   hi_ci#> 1           n_summarised 1000.00   0.00    0.00 1000.00 1000.00#> 2              size_mean 1749.60  11.36   10.97 1727.20 1772.10#> 3                size_sd  373.74   9.64    9.74  355.15  392.58#> 4            size_median 2000.00   0.00    0.00 2000.00 2000.00#> 5               size_p25 1400.00  52.43    0.00 1400.00 1500.00#> 6               size_p75 2000.00   0.00    0.00 2000.00 2000.00#> 7                size_p0  400.00     NA      NA      NA      NA#> 8              size_p100 2000.00     NA      NA      NA      NA#> 9            sum_ys_mean  438.69   2.95    2.85  432.74  444.66#> 10             sum_ys_sd   96.20   2.42    2.37   91.28  100.79#> 11         sum_ys_median  486.00   1.98    2.97  483.00  490.00#> 12            sum_ys_p25  364.75  10.95    9.64  352.00  395.00#> 13            sum_ys_p75  506.00   1.15    1.48  504.00  508.00#> 14             sum_ys_p0   88.00     NA      NA      NA      NA#> 15           sum_ys_p100  565.00     NA      NA      NA      NA#> 16         ratio_ys_mean    0.25   0.00    0.00    0.25    0.25#> 17           ratio_ys_sd    0.01   0.00    0.00    0.01    0.01#> 18       ratio_ys_median    0.25   0.00    0.00    0.25    0.25#> 19          ratio_ys_p25    0.24   0.00    0.00    0.24    0.24#> 20          ratio_ys_p75    0.26   0.00    0.00    0.26    0.26#> 21           ratio_ys_p0    0.20     NA      NA      NA      NA#> 22         ratio_ys_p100    0.30     NA      NA      NA      NA#> 23       prob_conclusive    0.43   0.02    0.01    0.40    0.46#> 24         prob_superior    0.05   0.01    0.01    0.04    0.06#> 25      prob_equivalence    0.38   0.02    0.01    0.35    0.41#> 26         prob_futility    0.00   0.00    0.00    0.00    0.00#> 27              prob_max    0.57   0.02    0.01    0.54    0.60#> 28 prob_select_arm_Arm A    0.32   0.02    0.01    0.29    0.35#> 29 prob_select_arm_Arm B    0.31   0.01    0.01    0.28    0.34#> 30 prob_select_arm_Arm C    0.37   0.02    0.02    0.34    0.40#> 31      prob_select_none    0.00   0.00    0.00    0.00    0.00#> 32                  rmse    0.02   0.00    0.00    0.02    0.02#> 33               rmse_te      NA     NA      NA      NA      NA#> 34                   mae    0.01   0.00    0.00    0.01    0.01#> 35                mae_te      NA     NA      NA      NA      NA#> 36                   idp      NA     NA      NA      NA      NA

Similar results inlist format (without uncertainty measures) can beobtained using thesummary() method, which comes with aprint()method providing formatted results:

binom_trial_summary<- summary(calibrated_binom_trial$best_sims,select_strategy="best")print(binom_trial_summary)#> Multiple simulation results: generic binomially distributed outcome trial#> * Undesirable outcome#> * Number of simulations: 1000#> * Number of simulations summarised: 1000 (all trials)#> * No common control arm#> * Selection strategy: best remaining available#> * Treatment effect compared to: no comparison#>#> Performance metrics (using posterior estimates from final analysis [all patients]):#> * Sample sizes: mean 1749.6 (SD: 373.7) | median 2000.0 (IQR: 1400.0 to 2000.0) [range: 400.0 to 2000.0]#> * Total summarised outcomes: mean 438.7 (SD: 96.2) | median 486.0 (IQR: 364.8 to 506.0) [range: 88.0 to 565.0]#> * Total summarised outcome rates: mean 0.251 (SD: 0.011) | median 0.250 (IQR: 0.244 to 0.258) [range: 0.198 to 0.295]#> * Conclusive: 42.9%#> * Superiority: 4.8%#> * Equivalence: 38.1%#> * Futility: 0.0% [not assessed]#> * Inconclusive at max sample size: 57.1%#> * Selection probabilities: Arm A: 31.8% | Arm B: 31.0% | Arm C: 37.2% | None: 0.0%#> * RMSE / MAE: 0.01730 / 0.01102#> * RMSE / MAE treatment effect: not estimated / not estimated#> * Ideal design percentage: not estimable#>#> Simulation details:#> * Simulation time: 33.1 secs#> * Base random seed: 4131#> * Credible interval width: 95%#> * Number of posterior draws: 5000#> * Estimation method: posterior medians with MAD-SDs

Individual simulation results may be extracted in a tidydata.frameusingextract_results().

Finally, the probabilities of different remaining arms and theirstatuses (with uncertainty) at the last adaptive analysis can besummarised using thecheck_remaining_arms() function.

Visualising results

Several visualisation functions are included (all are optional, and allrequire theggplot2 package installed).

Convergence and stability of one or more performance metrics may bevisually assessed usingplot_convergence() function:

plot_convergence(calibrated_binom_trial$best_sims,metrics= c("size mean","prob_superior","prob_equivalence"),# select_strategy can be specified, but does not affect the chosen metrics)

The empirical cumulative distribution functions for continuousperformance metrics may also be visualised:

plot_metrics_ecdf(calibrated_binom_trial$best_sims,metrics="size")

The status probabilities for the overall trial (or for specific arms)according to trial progress can be visualised using theplot_status()function:

# Overall trial status probabilitiesplot_status(calibrated_binom_trial$best_sims,x_value="total n"# Total number of randomised patients at X-axis)

Finally, various metrics may be summarised over the progress of one ormultiple trial simulations using theplot_history() function, whichrequires non-sparse results (thesparse argument must beFALSE incalibrate_trials(),run_trials(), orrun_trial(), leading toadditional results being saved).

Use calibrated stopping thresholds in another scenario

The calibrated stopping thresholds (calibrated in a scenario with nobetween-arm differences) may be used to run simulations with the sameoverall trial specification, but according to a different scenario(i.e., with between-arm differences present) to assess performancemetrics (including the Bayesian analogue of power).

First, a new trial specification is setup using the same settings asbefore, except for between-arm differences and the calibrated stoppingthresholds:

binom_trial_calib_diff<- setup_trial_binom(arms= c("Arm A","Arm B","Arm C"),true_ys= c(0.25,0.20,0.30),# Different outcomes in the armsmin_probs= rep(0.20,3),data_looks= seq(from=300,to=2000,by=100),randomised_at_looks= c(seq(from=400,to=2000,by=100),2000),# Stopping rules for inferiority/superiority explicitly defined# using the calibration resultsinferiority=1-calibrated_binom_trial$best_x,superiority=calibrated_binom_trial$best_x,equivalence_prob=0.9,equivalence_diff=0.05)

Simulations using the trial specification with calibrated stoppingthresholds and differences present can then be conducted using therun_trials() function and performance metrics calculated as above:

binom_trial_diff_sims<- run_trials(binom_trial_calib_diff,n_rep=1000,# 1000 simulations (more generally recommended)base_seed=1234# Reproducible results)check_performance(binom_trial_diff_sims,select_strategy="best",uncertainty=TRUE,n_boot=1000,# 1000 bootstrap samples (more typically recommended)ci_width=0.95,boot_seed="base")#>                   metric      est err_sd err_mad    lo_ci    hi_ci#> 1           n_summarised 1000.000  0.000   0.000 1000.000 1000.000#> 2              size_mean 1242.300 16.620  16.976 1209.895 1273.025#> 3                size_sd  531.190  7.251   7.604  516.617  544.091#> 4            size_median 1200.000 22.220   0.000 1200.000 1300.000#> 5               size_p25  800.000 36.095   0.000  700.000  800.000#> 6               size_p75 1700.000 42.453   0.000 1700.000 1800.000#> 7                size_p0  400.000     NA      NA       NA       NA#> 8              size_p100 2000.000     NA      NA       NA       NA#> 9            sum_ys_mean  284.999  3.695   3.726  277.724  291.991#> 10             sum_ys_sd  117.265  1.701   1.732  113.765  120.311#> 11         sum_ys_median  279.000  5.268   4.448  269.500  289.512#> 12            sum_ys_p25  186.000  6.682   7.413  174.000  197.019#> 13            sum_ys_p75  390.000  7.633   7.413  374.000  402.250#> 14             sum_ys_p0   81.000     NA      NA       NA       NA#> 15           sum_ys_p100  519.000     NA      NA       NA       NA#> 16         ratio_ys_mean    0.232  0.000   0.001    0.231    0.233#> 17           ratio_ys_sd    0.016  0.000   0.000    0.015    0.017#> 18       ratio_ys_median    0.230  0.001   0.000    0.230    0.232#> 19          ratio_ys_p25    0.221  0.000   0.000    0.220    0.222#> 20          ratio_ys_p75    0.242  0.001   0.001    0.240    0.243#> 21           ratio_ys_p0    0.195     NA      NA       NA       NA#> 22         ratio_ys_p100    0.298     NA      NA       NA       NA#> 23       prob_conclusive    0.877  0.011   0.010    0.857    0.898#> 24         prob_superior    0.731  0.014   0.015    0.706    0.759#> 25      prob_equivalence    0.146  0.011   0.011    0.125    0.167#> 26         prob_futility    0.000  0.000   0.000    0.000    0.000#> 27              prob_max    0.123  0.011   0.010    0.102    0.143#> 28 prob_select_arm_Arm A    0.038  0.006   0.006    0.026    0.049#> 29 prob_select_arm_Arm B    0.962  0.006   0.006    0.951    0.974#> 30 prob_select_arm_Arm C    0.000  0.000   0.000    0.000    0.000#> 31      prob_select_none    0.000  0.000   0.000    0.000    0.000#> 32                  rmse    0.020  0.001   0.001    0.019    0.022#> 33               rmse_te       NA     NA      NA       NA       NA#> 34                   mae    0.011  0.000   0.000    0.010    0.012#> 35                mae_te       NA     NA      NA       NA       NA#> 36                   idp   98.100  0.306   0.297   97.549   98.700

Again, simulations may be saved and reloaded using thepath argument.

Similarly, overall trial statuses for the scenario with differences canbe visualised:

plot_status(binom_trial_diff_sims,x_value="total n")

Issues and enhancements

We use theGitHub issuetracker for all bug/issuereports and proposals for enhancements.

Contributing

We welcome contributions directly to the code to improve performance aswell as new functionality. For the latter, please first explain andmotivate it in anissue.

Changes to the code base should follow these steps:

  • Forkthe repository
  • Make abranchwith an appropriate name in your fork
  • Implement changes in your fork, make sure it passes R CMD check(with neither errors, warnings, nor notes) and add a bullet at thetop of NEWS.md with a short description of the change, your GitHubhandle and the id of the pull request implementing the change (checktheNEWS.md file to see the formatting)
  • Create apullrequestinto thedev branch ofadaptr

Citation

If you use the package, please consider citing it:

citation(package="adaptr")#>#> To cite package 'adaptr' in publications use:#>#>   Granholm A, Jensen AKG, Lange T, Kaas-Hansen BS (2022). adaptr: an R#>   package for simulating and comparing adaptive clinical trials.#>   Journal of Open Source Software, 7(72), 4284. URL#>   https://doi.org/10.21105/joss.04284.#>#> A BibTeX entry for LaTeX users is#>#>   @Article{,#>     title = {{adaptr}: an R package for simulating and comparing adaptive clinical trials},#>     author = {Anders Granholm and Aksel Karl Georg Jensen and Theis Lange and Benjamin Skov Kaas-Hansen},#>     journal = {Journal of Open Source Software},#>     year = {2022},#>     volume = {7},#>     number = {72},#>     pages = {4284},#>     url = {https://doi.org/10.21105/joss.04284},#>     doi = {10.21105/joss.04284},#>   }

About

Adaptive Trial Simulator

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors2

  •  
  •  

Languages


[8]ページ先頭

©2009-2025 Movatter.jp