- Notifications
You must be signed in to change notification settings - Fork24
Hwang64/MLKP
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
CVPR18 Paper: Multi-scale Location-aware Kernel Representation for Object Detection. Paper can be found inarXiv andCVPR2018.
MLKP is a novel compact, location-aware kernel approximation method to represent object proposals for effective object detection. Our method is among the first which exploits high-order statistics in improving performance of object detection. The significant improvement over the first-order statistics based counterparts demonstrates the effectiveness of the proposed MLKP.
If you find MLKP useful in your research, please consider citing:
@InProceedings{Wang_2018_CVPR,author = {Wang, Hao and Wang, Qilong and Gao, Mingqi and Li, Peihua and Zuo, Wangmeng},title = {Multi-Scale Location-Aware Kernel Representation for Object Detection},booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},month = {June},year = {2018}}
@article{wang2021multi, title={Multi-scale structural kernel representation for object detection}, author={Wang, Hao and Wang, Qilong and Li, Peihua and Zuo, Wangmeng}, journal={Pattern Recognition}, volume={110}, pages={107593}, year={2021}, publisher={Elsevier}}
The code is modified frompy-faster-rcnn.
For multi-gpu training, please refer topy-R-FCN-multiGPU
- OS: Linux 14.02
- GPU: TiTan 1080 Ti
- CUDA: version 8.0
- CUDNN: version 5.0
Slight changes may not results instabilities
We have re-trained our networks and the results are refreshed as belows:
Networks | mAP | aero | bike | bird | boat | bottle | bus | car | cat | chair | cow | table | dog | horse | mbike | person | plant | sheep | sofa | train | tv |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
VGG16 | 78.4 | 80.4 | 83.0 | 77.6 | 70.0 | 71.8 | 84.2 | 87.5 | 86.7 | 67.0 | 83.1 | 70.3 | 84.9 | 85.5 | 81.9 | 79.2 | 52.6 | 79.7 | 79.6 | 81.7 | 81.4 |
ResNet | 81.0 | 80.3 | 87.1 | 80.8 | 73.5 | 71.6 | 86.0 | 88.4 | 88.8 | 66.9 | 86.2 | 72.8 | 88.7 | 87.4 | 86.7 | 84.3 | 56.7 | 84.9 | 81.0 | 86.7 | 81.7 |
Networks | mAP | aero | bike | bird | boat | bottle | bus | car | cat | chair | cow | table | dog | horse | mbike | person | plant | sheep | sofa | train | tv |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
VGG16 | 75.5 | 86.4 | 83.4 | 78.2 | 60.5 | 57.9 | 80.6 | 79.5 | 91.2 | 56.4 | 81.0 | 58.6 | 91.3 | 84.4 | 84.3 | 83.5 | 56.5 | 77.8 | 67.5 | 83.9 | 67.4 |
ResNet | 78.0 | 87.2 | 85.6 | 79.7 | 67.3 | 63.3 | 81.2 | 82.0 | 92.9 | 60.2 | 82.1 | 61.0 | 91.2 | 84.7 | 86.6 | 85.5 | 60.6 | 80.8 | 69.5 | 85.8 | 72.4 |
Results can be found atVGG16 andResNet
Networks | Avg.Precision,IOU: | Avg.Precision,Area: | Avg.Recal,#Det: | Avg.Recal,Area: |
---|---|---|---|---|
0.5:0.95 0.50 0.75 | Small Med. Large | 1 10 100 | Small Med. Large | |
VGG16 | 26.9 48.4 26.9 | 8.6 29.2 41.1 | 25.6 37.9 38.9 | 16.0 44.1 59.0 |
ResNet | 30.0 51.3 31.0 | 9.6 32.4 47.2 | 27.8 40.7 41.7 | 16.4 46.8 65.1 |
Clone the MLKP repository
git clone https://github.com/Hwang64/MLKP.git
Build Caffe and pycaffe
cd $MLKP_ROOTgit clone https://github.com/Hwang64/caffe-mlkp.gitcd caffe-mlkpmake cleanmake all -j16 && make pycaffe
Build the Cython modules
cd $MLKP_ROOT/libmake
installation for training and testing models on PASCAL VOC dataset
3.0 The PASCAL VOC dataset has the basic structure:
$VOCdevkit/ # development kit $VOCdevkit/VOCcode/ # VOC utility code $VOCdevkit/VOC2007 # image sets, annotations, etc.
3.1 Create symlinks for the PASCAL VOC dataset
cd $MLKP_ROOT/data ln -s $VOCdevkit VOCdevkit2007 ln -s $VOCdevkit VOCdevkit2012
For more details, please refer topy-faster-rcnn.
Test with PASCAL VOC dataset
We provide PASCAL VOC 2007 pretrained models based on VGG16 and ResNet, please download the models manully fromBaiduYun orGoogleDrive and put them in
$MLKP_ROOT/output/
4.0 Test VOC07 using VGG16 network
python ./tools/test_net.py --gpu 0\ --def models/VGG16/test.prototxt\ --net output/VGG16_voc07_test.caffemodel\ --imdb voc_2007_test\ --cfg experiments/cfgs/faster_rcnn_end2end.yml
4.1 Test VOC07 using ResNet-101 network
python ./tools/test_net.py --gpu 0\ --def models/ResNet/test.prototxt\ --net output/ResNet_voc07_test.caffemodel\ --imdb voc_2007_test\ --cfg experiments/cfgs/faster_rcnn_end2end.yml
Train with PASCAL VOC dataset
Please download ImageNet-pretrained models first and put them into
$data/ImageNet_models
.5.0 Train using single GPU
python ./tools/train_net.py --gpu 0\ --solver models/VGG16/solver.prototxt\ --weights data/ImageNet_models/VGG16.v2.caffemodel\ --imdb voc_2007_trainval+voc_2012_trainval\ --cfg experiments/cfgs/faster_rcnn_end2end.yml
5.1 Train using multi-GPUs
python ./tools/train_net_multi_gpu.py --gpu 0,1,2,3\ --solver models/VGG16/solver.prototxt\ --weights data/ImageNet_models/VGG16.v2.caffemodel\ --imdb voc_2007_trainval+voc_2012_trainval\ --cfg experiments/cfgs/faster_rcnn_end2end.yml
About
CVPR18 Paper: Multi-scale Location-aware Kernel Representation for Object Detection
Resources
Uh oh!
There was an error while loading.Please reload this page.
Stars
Watchers
Forks
Releases
Packages0
Uh oh!
There was an error while loading.Please reload this page.