Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Tensorflow implementation of "Unsupervised Deep Embedding for Clustering Analysis"

NotificationsYou must be signed in to change notification settings

HaebinShin/dec-tensorflow

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Tensorflow implementation ofUnsupervised Deep Embedding for Clustering Analysis.

Installation

>>> pip3 install -r requirements.txt

Training

usage: train.py [-h] [--batch-size BATCH_SIZE] [--gpu-index GPU_INDEX]optional arguments:  -h, --help            show thishelp message andexit  --batch-size BATCH_SIZE                        Train Batch Size  --gpu-index GPU_INDEX                        GPU Index Number

Visualize

Theinference.py returns the latent representation ($z$), and exports thez.tsv,meta.tsv (label information).

usage: inference.py [-h] [--gpu-index GPU_INDEX]optional arguments:  -h, --help            show thishelp message andexit  --gpu-index GPU_INDEX                        GPU Index Number

For visualization, we use t-SNE by importingz.tsv,meta.tsv intoTensorboard.The visualization using MNIST shows as follow.

About

Tensorflow implementation of "Unsupervised Deep Embedding for Clustering Analysis"

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages


[8]ページ先頭

©2009-2025 Movatter.jp