Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Composite-based SEM

License

NotificationsYou must be signed in to change notification settings

FloSchuberth/cSEM

Repository files navigation

CRAN statusR-CMD-check

AppVeyor build statusLifecycle StatusCRAN downloads

Purpose

Estimate, analyse, test, and study linear, nonlinear, hierarchical andmulti-group structural equation models using composite-based approachesand procedures, including estimation techniques such as partial leastsquares path modeling (PLS-PM) and its derivatives (PLSc, OrdPLSc,robustPLSc), generalized structured component analysis (GSCA),generalized structured component analysis with uniqueness terms (GSCAm),generalized canonical correlation analysis (GCCA), principal componentanalysis (PCA), factor score regression (FSR) using sum score,regression or Bartlett scores (including bias correction using Croon’sapproach), as well as several tests and typical post-estimationprocedures (e.g., verify admissibility of the estimates, assess themodel fit, test the model fit, compute confidence intervals, comparegroups, etc.).

News (2025-05-15):

  • Release of cSEM version 0.6.1

  • Release of cSEM Version 0.6.0

  • Implementation of aplot() function to visualize cSEM models. Thanksto Nguyen.

  • Enhancement of thepredict() function

Installation

The package is available onCRAN:

install.packages("cSEM")

To install the development version, which is recommended, use:

# install.packages("devtools")devtools::install_github("M-E-Rademaker/cSEM")

Getting started

The best place to get started is thecSEM-website.

Basic usage

The basic usage is illustrated below.

Usually, usingcSEM is the same 3 step procedure:

  1. Pick a dataset and specify a model usinglavaansyntax
  2. Usecsem()
  3. Apply one of the post-estimation functions listed below on theresulting object.

Post-Estimation Functions

There are five major post-estimation verbs, three test family functionsand three do-family of function:

  • assess() : assess the model using common quality criteria
  • infer() : calculate common inferential quantities (e.g., standarderrors, confidence intervals)
  • predict() : predict endogenous indicator values
  • plot() : Plot the cSEM model
  • summarize() : summarize the results
  • verify() : verify admissibility of the estimates

Tests are performed by using the test family of functions. Currently,the following tests are implemented:

  • testCVPAT() performs a cross-validated predictive ability test
  • testOMF() : performs a test for overall model fit
  • testMICOM() : performs a test for composite measurement invariance
  • testMGD() : performs several tests to assess multi-group differences
  • testHausman() : performs the regression-based Hausman test to testfor endogeneity

Other miscellaneous post-estimation functions belong do the do-family offunctions. Currently, three do functions are implemented:

  • doIPMA(): performs an importance-performance matrix analysis
  • doNonlinearEffectsAnalysis(): performs a nonlinear effects analysissuch as floodlight and surface analysis
  • doRedundancyAnalysis(): performs a redundancy analysis

All functions require acSEMResults object.

Example

Models are defined usinglavaansyntax with some slightmodifications (see theSpecifying amodelsection on thecSEM-website).For illustration we use the build-in and well-knownsatisfactiondataset.

require(cSEM)## Note: The operator "<~" tells cSEM that the construct to its left is modeled##       as a composite.##       The operator "=~" tells cSEM that the construct to its left is modeled##       as a common factor.##       The operator "~" tells cSEM which are the dependent (left-hand side) and##       independent variables (right-hand side).model<-"# Structural modelEXPE ~ IMAGQUAL ~ EXPEVAL  ~ EXPE + QUALSAT  ~ IMAG + EXPE + QUAL + VALLOY  ~ IMAG + SAT# Composite modelIMAG <~ imag1 + imag2 + imag3EXPE <~ expe1 + expe2 + expe3QUAL <~ qual1 + qual2 + qual3 + qual4 + qual5VAL  <~ val1  + val2  + val3# Reflective measurement modelSAT  =~ sat1  + sat2  + sat3  + sat4LOY  =~ loy1  + loy2  + loy3  + loy4"

The estimation is conducted using thecsem() function.

# Estimate using defaultsres<- csem(.data=satisfaction,.model=model)res
## ________________________________________________________________________________## ----------------------------------- Overview -----------------------------------## ## Estimation was successful.## ## The result is a list of class cSEMResults with list elements:## ##  - Estimates##  - Information## ## To get an overview or help type:## ##  - ?cSEMResults##  - str(<object-name>)##  - listviewer::jsondedit(<object-name>, mode = 'view')## ## If you wish to access the list elements directly type e.g. ## ##  - <object-name>$Estimates## ## Available postestimation commands:## ##  - assess(<object-name>)##  - infer(<object-name)##  - predict(<object-name>)##  - summarize(<object-name>)##  - verify(<object-name>)## ________________________________________________________________________________

This is equal to:

csem(.data=satisfaction,.model=model,.approach_cor_robust="none",.approach_nl="sequential",.approach_paths="OLS",.approach_weights="PLS-PM",.conv_criterion="diff_absolute",.disattenuate=TRUE,.dominant_indicators=NULL,.estimate_structural=TRUE,.id=NULL,.iter_max=100,.normality=FALSE,.PLS_approach_cf="dist_squared_euclid",.PLS_ignore_structural_model=FALSE,.PLS_modes=NULL,.PLS_weight_scheme_inner="path",.reliabilities=NULL,.starting_values=NULL,.tolerance=1e-05,.resample_method="none",.resample_method2="none",.R=499,.R2=199,.handle_inadmissibles="drop",.user_funs=NULL,.eval_plan="sequential",.seed=NULL,.sign_change_option="none"    )

The result is always a named list of classcSEMResults.

To access list elements use$:

res$Estimates$Loading_estimatesres$Information$Model

A useful tool to examine a list is thelistviewerpackage. If you are newtocSEM this might be a good way to familiarize yourself with thestructure of acSEMResults object.

listviewer::jsonedit(res,mode="view")# requires the listviewer package.

Apply post-estimation functions:

## Get a summarysummarize(res)
## ________________________________________________________________________________## ----------------------------------- Overview -----------------------------------## ##  General information:##  ------------------------##  Estimation status                  = Ok##  Number of observations             = 250##  Weight estimator                   = PLS-PM##  Inner weighting scheme             = "path"##  Type of indicator correlation      = Pearson##  Path model estimator               = OLS##  Second-order approach              = NA##  Type of path model                 = Linear##  Disattenuated                      = Yes (PLSc)## ##  Construct details:##  ------------------##  Name  Modeled as     Order         Mode      ## ##  IMAG  Composite      First order   "modeB"   ##  EXPE  Composite      First order   "modeB"   ##  QUAL  Composite      First order   "modeB"   ##  VAL   Composite      First order   "modeB"   ##  SAT   Common factor  First order   "modeA"   ##  LOY   Common factor  First order   "modeA"   ## ## ----------------------------------- Estimates ----------------------------------## ## Estimated path coefficients:## ============================##   Path           Estimate  Std. error   t-stat.   p-value##   EXPE ~ IMAG      0.4714          NA        NA        NA##   QUAL ~ EXPE      0.8344          NA        NA        NA##   VAL ~ EXPE       0.0457          NA        NA        NA##   VAL ~ QUAL       0.7013          NA        NA        NA##   SAT ~ IMAG       0.2450          NA        NA        NA##   SAT ~ EXPE      -0.0172          NA        NA        NA##   SAT ~ QUAL       0.2215          NA        NA        NA##   SAT ~ VAL        0.5270          NA        NA        NA##   LOY ~ IMAG       0.1819          NA        NA        NA##   LOY ~ SAT        0.6283          NA        NA        NA## ## Estimated loadings:## ===================##   Loading          Estimate  Std. error   t-stat.   p-value##   IMAG =~ imag1      0.6306          NA        NA        NA##   IMAG =~ imag2      0.9246          NA        NA        NA##   IMAG =~ imag3      0.9577          NA        NA        NA##   EXPE =~ expe1      0.7525          NA        NA        NA##   EXPE =~ expe2      0.9348          NA        NA        NA##   EXPE =~ expe3      0.7295          NA        NA        NA##   QUAL =~ qual1      0.7861          NA        NA        NA##   QUAL =~ qual2      0.9244          NA        NA        NA##   QUAL =~ qual3      0.7560          NA        NA        NA##   QUAL =~ qual4      0.7632          NA        NA        NA##   QUAL =~ qual5      0.7834          NA        NA        NA##   VAL =~ val1        0.9518          NA        NA        NA##   VAL =~ val2        0.8056          NA        NA        NA##   VAL =~ val3        0.6763          NA        NA        NA##   SAT =~ sat1        0.9243          NA        NA        NA##   SAT =~ sat2        0.8813          NA        NA        NA##   SAT =~ sat3        0.7127          NA        NA        NA##   SAT =~ sat4        0.7756          NA        NA        NA##   LOY =~ loy1        0.9097          NA        NA        NA##   LOY =~ loy2        0.5775          NA        NA        NA##   LOY =~ loy3        0.9043          NA        NA        NA##   LOY =~ loy4        0.4917          NA        NA        NA## ## Estimated weights:## ==================##   Weight           Estimate  Std. error   t-stat.   p-value##   IMAG <~ imag1      0.0156          NA        NA        NA##   IMAG <~ imag2      0.4473          NA        NA        NA##   IMAG <~ imag3      0.6020          NA        NA        NA##   EXPE <~ expe1      0.2946          NA        NA        NA##   EXPE <~ expe2      0.6473          NA        NA        NA##   EXPE <~ expe3      0.2374          NA        NA        NA##   QUAL <~ qual1      0.2370          NA        NA        NA##   QUAL <~ qual2      0.4712          NA        NA        NA##   QUAL <~ qual3      0.1831          NA        NA        NA##   QUAL <~ qual4      0.1037          NA        NA        NA##   QUAL <~ qual5      0.2049          NA        NA        NA##   VAL <~ val1        0.7163          NA        NA        NA##   VAL <~ val2        0.2202          NA        NA        NA##   VAL <~ val3        0.2082          NA        NA        NA##   SAT <~ sat1        0.3209          NA        NA        NA##   SAT <~ sat2        0.3059          NA        NA        NA##   SAT <~ sat3        0.2474          NA        NA        NA##   SAT <~ sat4        0.2692          NA        NA        NA##   LOY <~ loy1        0.3834          NA        NA        NA##   LOY <~ loy2        0.2434          NA        NA        NA##   LOY <~ loy3        0.3812          NA        NA        NA##   LOY <~ loy4        0.2073          NA        NA        NA## ## Estimated indicator correlations:## =================================##   Correlation       Estimate  Std. error   t-stat.   p-value##   imag1 ~~ imag2      0.6437          NA        NA        NA##   imag1 ~~ imag3      0.5433          NA        NA        NA##   imag2 ~~ imag3      0.7761          NA        NA        NA##   expe1 ~~ expe2      0.5353          NA        NA        NA##   expe1 ~~ expe3      0.4694          NA        NA        NA##   expe2 ~~ expe3      0.5467          NA        NA        NA##   qual1 ~~ qual2      0.6053          NA        NA        NA##   qual1 ~~ qual3      0.5406          NA        NA        NA##   qual1 ~~ qual4      0.5662          NA        NA        NA##   qual1 ~~ qual5      0.5180          NA        NA        NA##   qual2 ~~ qual3      0.6187          NA        NA        NA##   qual2 ~~ qual4      0.6517          NA        NA        NA##   qual2 ~~ qual5      0.6291          NA        NA        NA##   qual3 ~~ qual4      0.4752          NA        NA        NA##   qual3 ~~ qual5      0.5074          NA        NA        NA##   qual4 ~~ qual5      0.6402          NA        NA        NA##   val1 ~~ val2        0.6344          NA        NA        NA##   val1 ~~ val3        0.4602          NA        NA        NA##   val2 ~~ val3        0.6288          NA        NA        NA## ## ------------------------------------ Effects -----------------------------------## ## Estimated total effects:## ========================##   Total effect    Estimate  Std. error   t-stat.   p-value##   EXPE ~ IMAG       0.4714          NA        NA        NA##   QUAL ~ IMAG       0.3933          NA        NA        NA##   QUAL ~ EXPE       0.8344          NA        NA        NA##   VAL ~ IMAG        0.2974          NA        NA        NA##   VAL ~ EXPE        0.6309          NA        NA        NA##   VAL ~ QUAL        0.7013          NA        NA        NA##   SAT ~ IMAG        0.4807          NA        NA        NA##   SAT ~ EXPE        0.5001          NA        NA        NA##   SAT ~ QUAL        0.5911          NA        NA        NA##   SAT ~ VAL         0.5270          NA        NA        NA##   LOY ~ IMAG        0.4840          NA        NA        NA##   LOY ~ EXPE        0.3142          NA        NA        NA##   LOY ~ QUAL        0.3714          NA        NA        NA##   LOY ~ VAL         0.3311          NA        NA        NA##   LOY ~ SAT         0.6283          NA        NA        NA## ## Estimated indirect effects:## ===========================##   Indirect effect    Estimate  Std. error   t-stat.   p-value##   QUAL ~ IMAG          0.3933          NA        NA        NA##   VAL ~ IMAG           0.2974          NA        NA        NA##   VAL ~ EXPE           0.5852          NA        NA        NA##   SAT ~ IMAG           0.2357          NA        NA        NA##   SAT ~ EXPE           0.5173          NA        NA        NA##   SAT ~ QUAL           0.3696          NA        NA        NA##   LOY ~ IMAG           0.3020          NA        NA        NA##   LOY ~ EXPE           0.3142          NA        NA        NA##   LOY ~ QUAL           0.3714          NA        NA        NA##   LOY ~ VAL            0.3311          NA        NA        NA## ________________________________________________________________________________
## Verify admissibility of the resultsverify(res)
## ________________________________________________________________________________## ## Verify admissibility:## ##   admissible## ## Details:## ##   Code   Status    Description##   1      ok        Convergence achieved                                   ##   2      ok        All absolute standardized loading estimates <= 1       ##   3      ok        Construct VCV is positive semi-definite                ##   4      ok        All reliability estimates <= 1                         ##   5      ok        Model-implied indicator VCV is positive semi-definite  ## ________________________________________________________________________________
## Test overall model fittestOMF(res)
## ________________________________________________________________________________## --------- Test for overall model fit based on Beran & Srivastava (1985) --------## ## Null hypothesis:## ##        ┌──────────────────────────────────────────────────────────────────┐##        │                                                                  │##        │   H0: The model-implied indicator covariance matrix equals the   │##        │   population indicator covariance matrix.                        │##        │                                                                  │##        └──────────────────────────────────────────────────────────────────┘## ## Test statistic and critical value: ## ##                                      Critical value##  Distance measure    Test statistic    95%   ##  dG                      0.6493      0.3250  ##  SRMR                    0.0940      0.0523  ##  dL                      2.2340      0.6921  ##  dML                     2.9219      1.6139  ##  ## ## Decision: ## ##                          Significance level##  Distance measure          95%   ##  dG                      reject  ##  SRMR                    reject  ##  dL                      reject  ##  dML                     reject  ##  ## Additional information:## ##  Out of 499 bootstrap replications 472 are admissible.##  See ?verify() for what constitutes an inadmissible result.## ##  The seed used was: 1435398027## ________________________________________________________________________________
## Assess the modelassess(res)
## ________________________________________________________________________________## ##  Construct        AVE           R2          R2_adj    ##  SAT            0.6851        0.7624        0.7585    ##  LOY            0.5552        0.5868        0.5834    ##  EXPE             NA          0.2222        0.2190    ##  QUAL             NA          0.6963        0.6951    ##  VAL              NA          0.5474        0.5438    ## ## -------------- Common (internal consistency) reliability estimates -------------## ##  Construct Cronbachs_alpha   Joereskogs_rho   Dijkstra-Henselers_rho_A ##  SAT        0.8940           0.8960                0.9051          ##  LOY        0.8194           0.8237                0.8761          ## ## ----------- Alternative (internal consistency) reliability estimates -----------## ##  Construct       RhoC         RhoC_mm    RhoC_weighted##  SAT            0.8960        0.8938        0.9051    ##  LOY            0.8237        0.8011        0.8761    ## ##  Construct  RhoC_weighted_mm     RhoT      RhoT_weighted##  SAT            0.9051        0.8940        0.8869    ##  LOY            0.8761        0.8194        0.7850    ## ## --------------------------- Distance and fit measures --------------------------## ##  Geodesic distance             = 0.6493432##  Squared Euclidean distance    = 2.23402##  ML distance                   = 2.921932## ##  Chi_square       = 727.5611##  Chi_square_df    = 3.954137##  CFI              = 0.8598825##  CN               = 75.14588##  GFI              = 0.7280612##  IFI              = 0.8615598##  NFI              = 0.8229918##  NNFI             = 0.8240917##  RMSEA            = 0.108922##  RMS_theta        = 0.05069299##  SRMR             = 0.09396871## ##  Degrees of freedom       = 184## ## --------------------------- Model selection criteria ---------------------------## ##  Construct        AIC          AICc          AICu     ##  EXPE          -59.8152      192.2824      -57.8072   ##  QUAL          -294.9343     -42.8367      -292.9263  ##  VAL           -193.2127      58.9506      -190.1945  ##  SAT           -350.2874     -97.9418      -345.2368  ##  LOY           -215.9322      36.2311      -212.9141  ## ##  Construct        BIC           FPE           GM      ##  EXPE          -52.7723       0.7872       259.8087   ##  QUAL          -287.8914      0.3074       271.8568   ##  VAL           -182.6483      0.4617       312.7010   ##  SAT           -332.6801      0.2463       278.2973   ##  LOY           -205.3678      0.4216       291.0665   ## ##  Construct        HQ            HQc       Mallows_Cp  ##  EXPE          -56.9806      -56.8695       2.7658    ##  QUAL          -292.0997     -291.9886      14.8139   ##  VAL           -188.9608     -188.7516      52.1366   ##  SAT           -343.2010     -342.7088      10.6900   ##  LOY           -211.6804     -211.4711      30.5022   ## ## ----------------------- Variance inflation factors (VIFs) ----------------------## ##   Dependent construct: 'VAL'## ##  Independent construct    VIF value ##  EXPE                      3.2928   ##  QUAL                      3.2928   ## ##   Dependent construct: 'SAT'## ##  Independent construct    VIF value ##  EXPE                      3.2985   ##  QUAL                      4.4151   ##  IMAG                      1.7280   ##  VAL                       2.6726   ## ##   Dependent construct: 'LOY'## ##  Independent construct    VIF value ##  IMAG                      1.9345   ##  SAT                       1.9345   ## ## -------------- Variance inflation factors (VIFs) for modeB weights -------------## ##   Construct: 'IMAG'## ##  Weight    VIF value ##  imag1      1.7215   ##  imag2      3.0515   ##  imag3      2.5356   ## ##   Construct: 'EXPE'## ##  Weight    VIF value ##  expe1      1.4949   ##  expe2      1.6623   ##  expe3      1.5212   ## ##   Construct: 'QUAL'## ##  Weight    VIF value ##  qual1      1.8401   ##  qual2      2.5005   ##  qual3      1.7796   ##  qual4      2.1557   ##  qual5      2.0206   ## ##   Construct: 'VAL'## ##  Weight    VIF value ##  val1       1.6912   ##  val2       2.2049   ##  val3       1.6714   ## ## -------------------------- Effect sizes (Cohen's f^2) --------------------------## ##   Dependent construct: 'EXPE'## ##  Independent construct       f^2    ##  IMAG                      0.2856   ## ##   Dependent construct: 'QUAL'## ##  Independent construct       f^2    ##  EXPE                      2.2928   ## ##   Dependent construct: 'VAL'## ##  Independent construct       f^2    ##  EXPE                      0.0014   ##  QUAL                      0.3301   ## ##   Dependent construct: 'SAT'## ##  Independent construct       f^2    ##  IMAG                      0.1462   ##  EXPE                      0.0004   ##  QUAL                      0.0468   ##  VAL                       0.4373   ## ##   Dependent construct: 'LOY'## ##  Independent construct       f^2    ##  IMAG                      0.0414   ##  SAT                       0.4938   ## ## ----------------------- Discriminant validity assessment -----------------------## ##  Heterotrait-monotrait ratio of correlations matrix (HTMT matrix)## ##           SAT LOY## SAT 1.0000000   0## LOY 0.7432489   1## ## ##  Advanced heterotrait-monotrait ratio of correlations matrix (HTMT2 matrix)## ##           SAT LOY## SAT 1.0000000   0## LOY 0.7140046   1## ## ##  Fornell-Larcker matrix## ##           SAT       LOY## SAT 0.6851491 0.5696460## LOY 0.5696460 0.5551718## ## ## ------------------------------------ Effects -----------------------------------## ## Estimated total effects:## ========================##   Total effect    Estimate  Std. error   t-stat.   p-value##   EXPE ~ IMAG       0.4714          NA        NA        NA##   QUAL ~ IMAG       0.3933          NA        NA        NA##   QUAL ~ EXPE       0.8344          NA        NA        NA##   VAL ~ IMAG        0.2974          NA        NA        NA##   VAL ~ EXPE        0.6309          NA        NA        NA##   VAL ~ QUAL        0.7013          NA        NA        NA##   SAT ~ IMAG        0.4807          NA        NA        NA##   SAT ~ EXPE        0.5001          NA        NA        NA##   SAT ~ QUAL        0.5911          NA        NA        NA##   SAT ~ VAL         0.5270          NA        NA        NA##   LOY ~ IMAG        0.4840          NA        NA        NA##   LOY ~ EXPE        0.3142          NA        NA        NA##   LOY ~ QUAL        0.3714          NA        NA        NA##   LOY ~ VAL         0.3311          NA        NA        NA##   LOY ~ SAT         0.6283          NA        NA        NA## ## Estimated indirect effects:## ===========================##   Indirect effect    Estimate  Std. error   t-stat.   p-value##   QUAL ~ IMAG          0.3933          NA        NA        NA##   VAL ~ IMAG           0.2974          NA        NA        NA##   VAL ~ EXPE           0.5852          NA        NA        NA##   SAT ~ IMAG           0.2357          NA        NA        NA##   SAT ~ EXPE           0.5173          NA        NA        NA##   SAT ~ QUAL           0.3696          NA        NA        NA##   LOY ~ IMAG           0.3020          NA        NA        NA##   LOY ~ EXPE           0.3142          NA        NA        NA##   LOY ~ QUAL           0.3714          NA        NA        NA##   LOY ~ VAL            0.3311          NA        NA        NA## ________________________________________________________________________________
## Predict indicator scores of endogenous constructspredict(res)
## ________________________________________________________________________________## ----------------------------------- Overview -----------------------------------## ##  Number of obs. training            = 225##  Number of obs. test                = 25##  Number of cv folds                 = 10##  Number of repetitions              = 1##  Handle inadmissibles               = stop##  Estimator target                   = 'PLS-PM'##  Estimator benchmark                = 'lm'##  Disattenuation target              = 'TRUE'##  Disattenuation benchmark           = 'FALSE'##  Approach to predict                = 'earliest'## ## ------------------------------ Prediction metrics ------------------------------## ## ##   Name      MAE target  MAE benchmark  RMSE target RMSE benchmark   Q2_predict##   expe1         1.4556         1.6007       1.9052         2.1120       0.0593##   expe2         1.4159         1.4995       1.9439         2.0341       0.1931##   expe3         1.6304         1.7347       2.1238         2.2121       0.1271##   qual1         1.4740         1.5633       1.9270         2.0706       0.1199##   qual2         1.5761         1.5390       2.0460         2.0554       0.2118##   qual3         1.7350         1.7318       2.2231         2.2706       0.1206##   qual4         1.2346         1.1964       1.5994         1.6335       0.2282##   qual5         1.5064         1.5112       1.9415         1.9621       0.1889##   val1          1.4447         1.3658       1.8682         1.7639       0.2512##   val2          1.2326         1.2260       1.6548         1.7262       0.1750##   val3          1.4873         1.3888       1.9705         1.9331       0.1483##   sat1          1.2469         1.2305       1.6435         1.6199       0.3427##   sat2          1.2227         1.1980       1.6310         1.6213       0.3147##   sat3          1.3372         1.2875       1.6663         1.7222       0.2161##   sat4          1.3138         1.2554       1.6645         1.6325       0.2800##   loy1          1.6853         1.6585       2.2295         2.2199       0.2744##   loy2          1.4885         1.4893       1.9173         1.9841       0.1321##   loy3          1.7060         1.6589       2.2828         2.2600       0.2706##   loy4          1.6858         1.6848       2.1760         2.2958       0.0908## ________________________________________________________________________________

Resampling and Inference

By default no inferential statistics are calculated since mostcomposite-based estimators have no closed-form expressions for standarderrors. Resampling is used instead.cSEM mostly relies on thebootstrap procedure (althoughjackknife is implemented as well) toestimate standard errors, test statistics, and critical quantiles.

cSEM offers two ways for resampling:

  1. Setting.resample_method incsem() to"jackknife" or"bootstrap" and subsequently using post-estimation functionssummarize() orinfer().
  2. The same result is achieved by passing acSEMResults object toresamplecSEMResults() and subsequently using post-estimationfunctionssummarize() orinfer().
# Setting `.resample_method`b1<- csem(.data=satisfaction,.model=model,.resample_method="bootstrap")# Using resamplecSEMResults()b2<- resamplecSEMResults(res)

Thesummarize() function reports the inferential statistics:

summarize(b1)
## ________________________________________________________________________________## ----------------------------------- Overview -----------------------------------## ##  General information:##  ------------------------##  Estimation status                  = Ok##  Number of observations             = 250##  Weight estimator                   = PLS-PM##  Inner weighting scheme             = "path"##  Type of indicator correlation      = Pearson##  Path model estimator               = OLS##  Second-order approach              = NA##  Type of path model                 = Linear##  Disattenuated                      = Yes (PLSc)## ##  Resample information:##  ---------------------##  Resample method                    = "bootstrap"##  Number of resamples                = 499##  Number of admissible results       = 484##  Approach to handle inadmissibles   = "drop"##  Sign change option                 = "none"##  Random seed                        = 1977515262## ##  Construct details:##  ------------------##  Name  Modeled as     Order         Mode      ## ##  IMAG  Composite      First order   "modeB"   ##  EXPE  Composite      First order   "modeB"   ##  QUAL  Composite      First order   "modeB"   ##  VAL   Composite      First order   "modeB"   ##  SAT   Common factor  First order   "modeA"   ##  LOY   Common factor  First order   "modeA"   ## ## ----------------------------------- Estimates ----------------------------------## ## Estimated path coefficients:## ============================##                                                              CI_percentile   ##   Path           Estimate  Std. error   t-stat.   p-value         95%        ##   EXPE ~ IMAG      0.4714      0.0640    7.3620    0.0000 [ 0.3525; 0.6041 ] ##   QUAL ~ EXPE      0.8344      0.0237   35.2259    0.0000 [ 0.7834; 0.8746 ] ##   VAL ~ EXPE       0.0457      0.0880    0.5193    0.6036 [-0.1027; 0.2278 ] ##   VAL ~ QUAL       0.7013      0.0840    8.3519    0.0000 [ 0.5243; 0.8539 ] ##   SAT ~ IMAG       0.2450      0.0527    4.6468    0.0000 [ 0.1478; 0.3510 ] ##   SAT ~ EXPE      -0.0172      0.0699   -0.2467    0.8052 [-0.1533; 0.1141 ] ##   SAT ~ QUAL       0.2215      0.0955    2.3203    0.0203 [ 0.0409; 0.4150 ] ##   SAT ~ VAL        0.5270      0.0877    6.0077    0.0000 [ 0.3423; 0.6807 ] ##   LOY ~ IMAG       0.1819      0.0832    2.1864    0.0288 [ 0.0255; 0.3480 ] ##   LOY ~ SAT        0.6283      0.0848    7.4083    0.0000 [ 0.4721; 0.7900 ] ## ## Estimated loadings:## ===================##                                                                CI_percentile   ##   Loading          Estimate  Std. error   t-stat.   p-value         95%        ##   IMAG =~ imag1      0.6306      0.0952    6.6224    0.0000 [ 0.4389; 0.8012 ] ##   IMAG =~ imag2      0.9246      0.0386   23.9330    0.0000 [ 0.8249; 0.9780 ] ##   IMAG =~ imag3      0.9577      0.0289   33.1944    0.0000 [ 0.8788; 0.9911 ] ##   EXPE =~ expe1      0.7525      0.0768    9.8003    0.0000 [ 0.5672; 0.8676 ] ##   EXPE =~ expe2      0.9348      0.0268   34.8163    0.0000 [ 0.8642; 0.9702 ] ##   EXPE =~ expe3      0.7295      0.0712   10.2453    0.0000 [ 0.5768; 0.8405 ] ##   QUAL =~ qual1      0.7861      0.0713   11.0301    0.0000 [ 0.6199; 0.8845 ] ##   QUAL =~ qual2      0.9244      0.0214   43.1845    0.0000 [ 0.8720; 0.9573 ] ##   QUAL =~ qual3      0.7560      0.0604   12.5064    0.0000 [ 0.6218; 0.8496 ] ##   QUAL =~ qual4      0.7632      0.0531   14.3743    0.0000 [ 0.6462; 0.8520 ] ##   QUAL =~ qual5      0.7834      0.0456   17.1646    0.0000 [ 0.6719; 0.8527 ] ##   VAL =~ val1        0.9518      0.0210   45.2347    0.0000 [ 0.8984; 0.9832 ] ##   VAL =~ val2        0.8056      0.0601   13.4012    0.0000 [ 0.6615; 0.9042 ] ##   VAL =~ val3        0.6763      0.0714    9.4781    0.0000 [ 0.5234; 0.7999 ] ##   SAT =~ sat1        0.9243      0.0223   41.4418    0.0000 [ 0.8741; 0.9612 ] ##   SAT =~ sat2        0.8813      0.0274   32.1173    0.0000 [ 0.8216; 0.9308 ] ##   SAT =~ sat3        0.7127      0.0561   12.6974    0.0000 [ 0.5969; 0.8043 ] ##   SAT =~ sat4        0.7756      0.0515   15.0636    0.0000 [ 0.6644; 0.8675 ] ##   LOY =~ loy1        0.9097      0.0520   17.4780    0.0000 [ 0.7958; 0.9895 ] ##   LOY =~ loy2        0.5775      0.0876    6.5891    0.0000 [ 0.3783; 0.7264 ] ##   LOY =~ loy3        0.9043      0.0427   21.1566    0.0000 [ 0.8064; 0.9770 ] ##   LOY =~ loy4        0.4917      0.0956    5.1452    0.0000 [ 0.3125; 0.6821 ] ## ## Estimated weights:## ==================##                                                                CI_percentile   ##   Weight           Estimate  Std. error   t-stat.   p-value         95%        ##   IMAG <~ imag1      0.0156      0.1142    0.1369    0.8911 [-0.1863; 0.2543 ] ##   IMAG <~ imag2      0.4473      0.1458    3.0679    0.0022 [ 0.1813; 0.7350 ] ##   IMAG <~ imag3      0.6020      0.1382    4.3572    0.0000 [ 0.3181; 0.8331 ] ##   EXPE <~ expe1      0.2946      0.1158    2.5450    0.0109 [ 0.0609; 0.5113 ] ##   EXPE <~ expe2      0.6473      0.0810    7.9964    0.0000 [ 0.4796; 0.7816 ] ##   EXPE <~ expe3      0.2374      0.0923    2.5713    0.0101 [ 0.0562; 0.4040 ] ##   QUAL <~ qual1      0.2370      0.0916    2.5883    0.0096 [ 0.0738; 0.4230 ] ##   QUAL <~ qual2      0.4712      0.0756    6.2361    0.0000 [ 0.3216; 0.6112 ] ##   QUAL <~ qual3      0.1831      0.0806    2.2725    0.0231 [ 0.0168; 0.3288 ] ##   QUAL <~ qual4      0.1037      0.0617    1.6804    0.0929 [-0.0057; 0.2300 ] ##   QUAL <~ qual5      0.2049      0.0570    3.5919    0.0003 [ 0.0856; 0.3090 ] ##   VAL <~ val1        0.7163      0.0899    7.9683    0.0000 [ 0.5290; 0.8811 ] ##   VAL <~ val2        0.2202      0.0905    2.4336    0.0149 [ 0.0454; 0.4062 ] ##   VAL <~ val3        0.2082      0.0586    3.5516    0.0004 [ 0.0883; 0.3139 ] ##   SAT <~ sat1        0.3209      0.0156   20.5296    0.0000 [ 0.2937; 0.3547 ] ##   SAT <~ sat2        0.3059      0.0142   21.5290    0.0000 [ 0.2827; 0.3375 ] ##   SAT <~ sat3        0.2474      0.0122   20.2398    0.0000 [ 0.2213; 0.2683 ] ##   SAT <~ sat4        0.2692      0.0123   21.8476    0.0000 [ 0.2454; 0.2916 ] ##   LOY <~ loy1        0.3834      0.0273   14.0506    0.0000 [ 0.3266; 0.4380 ] ##   LOY <~ loy2        0.2434      0.0314    7.7566    0.0000 [ 0.1702; 0.2948 ] ##   LOY <~ loy3        0.3812      0.0267   14.2502    0.0000 [ 0.3298; 0.4309 ] ##   LOY <~ loy4        0.2073      0.0356    5.8233    0.0000 [ 0.1410; 0.2821 ] ## ## Estimated indicator correlations:## =================================##                                                                 CI_percentile   ##   Correlation       Estimate  Std. error   t-stat.   p-value         95%        ##   imag1 ~~ imag2      0.6437      0.0669    9.6187    0.0000 [ 0.4950; 0.7655 ] ##   imag1 ~~ imag3      0.5433      0.0681    7.9783    0.0000 [ 0.4038; 0.6783 ] ##   imag2 ~~ imag3      0.7761      0.0377   20.5965    0.0000 [ 0.7038; 0.8448 ] ##   expe1 ~~ expe2      0.5353      0.0579    9.2489    0.0000 [ 0.4101; 0.6323 ] ##   expe1 ~~ expe3      0.4694      0.0586    8.0072    0.0000 [ 0.3537; 0.5865 ] ##   expe2 ~~ expe3      0.5467      0.0591    9.2453    0.0000 [ 0.4313; 0.6512 ] ##   qual1 ~~ qual2      0.6053      0.0604   10.0187    0.0000 [ 0.4773; 0.7063 ] ##   qual1 ~~ qual3      0.5406      0.0620    8.7262    0.0000 [ 0.4062; 0.6377 ] ##   qual1 ~~ qual4      0.5662      0.0641    8.8274    0.0000 [ 0.4442; 0.6822 ] ##   qual1 ~~ qual5      0.5180      0.0688    7.5334    0.0000 [ 0.3753; 0.6428 ] ##   qual2 ~~ qual3      0.6187      0.0528   11.7130    0.0000 [ 0.4954; 0.7022 ] ##   qual2 ~~ qual4      0.6517      0.0593   10.9968    0.0000 [ 0.5210; 0.7559 ] ##   qual2 ~~ qual5      0.6291      0.0574   10.9637    0.0000 [ 0.5080; 0.7250 ] ##   qual3 ~~ qual4      0.4752      0.0616    7.7088    0.0000 [ 0.3453; 0.5831 ] ##   qual3 ~~ qual5      0.5074      0.0606    8.3760    0.0000 [ 0.3788; 0.6139 ] ##   qual4 ~~ qual5      0.6402      0.0568   11.2775    0.0000 [ 0.5190; 0.7359 ] ##   val1 ~~ val2        0.6344      0.0531   11.9377    0.0000 [ 0.5227; 0.7338 ] ##   val1 ~~ val3        0.4602      0.0684    6.7307    0.0000 [ 0.3247; 0.5922 ] ##   val2 ~~ val3        0.6288      0.0645    9.7494    0.0000 [ 0.4793; 0.7373 ] ## ## ------------------------------------ Effects -----------------------------------## ## Estimated total effects:## ========================##                                                               CI_percentile   ##   Total effect    Estimate  Std. error   t-stat.   p-value         95%        ##   EXPE ~ IMAG       0.4714      0.0640    7.3620    0.0000 [ 0.3525; 0.6041 ] ##   QUAL ~ IMAG       0.3933      0.0601    6.5404    0.0000 [ 0.2804; 0.5152 ] ##   QUAL ~ EXPE       0.8344      0.0237   35.2259    0.0000 [ 0.7834; 0.8746 ] ##   VAL ~ IMAG        0.2974      0.0611    4.8645    0.0000 [ 0.1970; 0.4252 ] ##   VAL ~ EXPE        0.6309      0.0516   12.2352    0.0000 [ 0.5300; 0.7305 ] ##   VAL ~ QUAL        0.7013      0.0840    8.3519    0.0000 [ 0.5243; 0.8539 ] ##   SAT ~ IMAG        0.4807      0.0663    7.2488    0.0000 [ 0.3556; 0.6152 ] ##   SAT ~ EXPE        0.5001      0.0547    9.1357    0.0000 [ 0.3901; 0.6035 ] ##   SAT ~ QUAL        0.5911      0.0908    6.5110    0.0000 [ 0.3895; 0.7502 ] ##   SAT ~ VAL         0.5270      0.0877    6.0077    0.0000 [ 0.3423; 0.6807 ] ##   LOY ~ IMAG        0.4840      0.0672    7.2055    0.0000 [ 0.3582; 0.6266 ] ##   LOY ~ EXPE        0.3142      0.0528    5.9525    0.0000 [ 0.2136; 0.4154 ] ##   LOY ~ QUAL        0.3714      0.0829    4.4819    0.0000 [ 0.2180; 0.5392 ] ##   LOY ~ VAL         0.3311      0.0782    4.2348    0.0000 [ 0.1895; 0.4858 ] ##   LOY ~ SAT         0.6283      0.0848    7.4083    0.0000 [ 0.4721; 0.7900 ] ## ## Estimated indirect effects:## ===========================##                                                                  CI_percentile   ##   Indirect effect    Estimate  Std. error   t-stat.   p-value         95%        ##   QUAL ~ IMAG          0.3933      0.0601    6.5404    0.0000 [ 0.2804; 0.5152 ] ##   VAL ~ IMAG           0.2974      0.0611    4.8645    0.0000 [ 0.1970; 0.4252 ] ##   VAL ~ EXPE           0.5852      0.0717    8.1581    0.0000 [ 0.4398; 0.7218 ] ##   SAT ~ IMAG           0.2357      0.0484    4.8657    0.0000 [ 0.1492; 0.3401 ] ##   SAT ~ EXPE           0.5173      0.0625    8.2764    0.0000 [ 0.4006; 0.6383 ] ##   SAT ~ QUAL           0.3696      0.0615    6.0090    0.0000 [ 0.2420; 0.4795 ] ##   LOY ~ IMAG           0.3020      0.0552    5.4680    0.0000 [ 0.2020; 0.4177 ] ##   LOY ~ EXPE           0.3142      0.0528    5.9525    0.0000 [ 0.2136; 0.4154 ] ##   LOY ~ QUAL           0.3714      0.0829    4.4819    0.0000 [ 0.2180; 0.5392 ] ##   LOY ~ VAL            0.3311      0.0782    4.2348    0.0000 [ 0.1895; 0.4858 ] ## ________________________________________________________________________________

Several bootstrap-based confidence intervals are implemented, see?infer():

infer(b1,.quantity= c("CI_standard_z","CI_percentile"))# no print method yet

Both bootstrap and jackknife resampling support platform-independentmultiprocessing as well as setting random seeds via thefutureframework. For multiprocessingsimply set.eval_plan = "multisession" in which case the maximumnumber of available cores is used if not on Windows. On Windows as manyseparate R instances are opened in the background as there are coresavailable instead. Note that this naturally has some overhead so for asmall number of resamples multiprocessing will not always be fastercompared to sequential (single core) processing (the default). Seeds areset via the.seed argument.

b<- csem(.data=satisfaction,.model=model,.resample_method="bootstrap",.R=999,.seed=98234,.eval_plan="multisession")

About

Composite-based SEM

Resources

License

Contributing

Stars

Watchers

Forks

Packages

No packages published

Contributors10


[8]ページ先頭

©2009-2025 Movatter.jp